Lieb–Robinson Bounds for the Toda Lattice

被引:0
作者
Umar Islambekov
Robert Sims
Gerald Teschl
机构
[1] University of Arizona,Department of Mathematics
[2] University of Vienna,Faculty of Mathematics
[3] International Erwin Schrödinger Institute for Mathematical Physics,undefined
来源
Journal of Statistical Physics | 2012年 / 148卷
关键词
Toda lattice; Lieb–Robinson bound;
D O I
暂无
中图分类号
学科分类号
摘要
We establish locality estimates, known as Lieb–Robinson bounds, for the Toda lattice. In contrast to harmonic models, the Lieb–Robinson velocity for these systems do depend on the initial condition. Our results also apply to the entire Toda as well as the Kac-van Moerbeke hierarchy. Under suitable assumptions, our methods also yield a finite velocity for certain perturbations of these systems.
引用
收藏
页码:440 / 479
页数:39
相关论文
共 50 条
  • [21] Stable solitary wave in diatomic Toda lattice
    Tabata, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (12) : 3689 - 3691
  • [22] Finite Toda lattice and classical moment problem
    Mikhaylov, A. S.
    Mikhaylov, V. S.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2020, 11 (01): : 25 - 29
  • [23] AC-DRIVEN DAMPED TODA LATTICE
    KUUSELA, T
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (10-12) : 327 - 351
  • [24] Thermal Conductivity of the Toda Lattice with Conservative Noise
    Iacobucci, Alessandra
    Legoll, Frederic
    Olla, Stefano
    Stoltz, Gabriel
    JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (02) : 336 - 348
  • [25] Some Classes of Solutions to the Toda Lattice Hierarchy
    Harold Widom
    Communications in Mathematical Physics, 1997, 184 : 653 - 667
  • [26] Compatible Lie algebroids and the periodic Toda lattice
    Meucci, A
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (04) : 273 - 287
  • [27] An operator theoretic approach to the Toda lattice equation
    Schiebold, C
    PHYSICA D, 1998, 122 (1-4): : 37 - 61
  • [28] TODA LATTICE AND TOMIMATSU-SATO SOLUTIONS
    FUKUYAMA, T
    KAMIMURA, K
    YU, SJ
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (09) : 3201 - 3206
  • [29] Existence of periodic solutions in inhomogeneous Toda Lattice
    Matsui, G
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (08) : 2447 - 2454
  • [30] Thermal Conductivity of the Toda Lattice with Conservative Noise
    Alessandra Iacobucci
    Frédéric Legoll
    Stefano Olla
    Gabriel Stoltz
    Journal of Statistical Physics, 2010, 140 : 336 - 348