Lieb–Robinson Bounds for the Toda Lattice

被引:0
|
作者
Umar Islambekov
Robert Sims
Gerald Teschl
机构
[1] University of Arizona,Department of Mathematics
[2] University of Vienna,Faculty of Mathematics
[3] International Erwin Schrödinger Institute for Mathematical Physics,undefined
来源
Journal of Statistical Physics | 2012年 / 148卷
关键词
Toda lattice; Lieb–Robinson bound;
D O I
暂无
中图分类号
学科分类号
摘要
We establish locality estimates, known as Lieb–Robinson bounds, for the Toda lattice. In contrast to harmonic models, the Lieb–Robinson velocity for these systems do depend on the initial condition. Our results also apply to the entire Toda as well as the Kac-van Moerbeke hierarchy. Under suitable assumptions, our methods also yield a finite velocity for certain perturbations of these systems.
引用
收藏
页码:440 / 479
页数:39
相关论文
共 50 条
  • [1] Lieb-Robinson Bounds for the Toda Lattice
    Islambekov, Umar
    Sims, Robert
    Teschl, Gerald
    JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (03) : 440 - 479
  • [2] Separability of the Toda Lattice
    McLenaghan, RG
    Smirnov, RG
    APPLIED MATHEMATICS LETTERS, 2000, 13 (04) : 77 - 82
  • [3] Extended Toda Lattice
    G. Carlet
    Theoretical and Mathematical Physics, 2003, 137 : 1390 - 1395
  • [4] Extended Toda lattice
    Carlet, G
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) : 1390 - 1395
  • [5] THE TODA LATTICE, OLD AND NEW
    Tomei, Carlos
    JOURNAL OF GEOMETRIC MECHANICS, 2013, 5 (04) : 511 - 530
  • [6] The modular hierarchy of the Toda lattice
    Agrotis, Maria A.
    Damianou, Pantelis A.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (06) : 655 - 666
  • [7] The Novel Solutions of the Toda Lattice
    孙梅娜
    杜丛民
    Journal of Shanghai University, 2004, (03) : 289 - 291
  • [8] Integrable Variants of the Toda Lattice
    Liu, Ya-Jie
    Wang, Hui Alan
    Chang, Xiang-Ke
    Hu, Xing-Biao
    Zhang, Ying-Nan
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (05)
  • [9] Benchmarking numerical methods for lattice equations with the Toda lattice
    Bilman, Deniz
    Trogdon, Thomas
    APPLIED NUMERICAL MATHEMATICS, 2019, 141 : 19 - 35
  • [10] Toda lattice with constraint of type B
    Krichever, I.
    Zabrodin, A.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 453