Spectrum Monitoring Based on End-to-End Learning by Deep Learning

被引:0
|
作者
Mahdiyeh Rahmani
Reza Ghazizadeh
机构
[1] Birjand University,Department of Telecommunication Engineering, Faculty of Electrical and Computer Engineering
来源
International Journal of Wireless Information Networks | 2022年 / 29卷
关键词
Machine learning; Spectrum monitoring; Modulation recognition; Wireless technology; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Numerous autonomous wireless deployments have become invaluable for understanding and investigating the radio frequency environment. However, machine learning techniques have their drawbacks and there are situations where such strategies are unreliable. The purpose of the present paper is to present an end-to-end learning framework based on deep learning (DL) and to evaluate different methods of wireless signal classifiers implementation and signal representation for spectrum monitoring. Furthermore, we tend to investigate the significance of wireless data representation selection for varied spectrum monitoring tasks. For each case study, modulation recognition (MR) and wireless interference identification (IId), three deep learning networks are evaluated for the subsequent wireless signal representations, temporal I/Q data, the amplitude/phase, frequency domain and Hilbert and wavelet transform representations. From our analysis, the accuracy of wireless signal identification is proved to be affected by the network classifier and wireless data representation. For different signal-to-noise ratio values, the classification accuracy of the three DL networks are evaluated. The results of the experiments indicate that the representation of data influences network accuracy. In MR case, in high SNR (18), the first, second and third networks have the best results in the db3 mother wavelet, amplitude/phase and Hilbert samples, respectively. In the medium and low SNR (0, − 8) in all three networks, almost the best results is obtained from Hilbert data representation with the accuracy variation up to 4%. In IId case, for three SNR (− 8, 0, 18) in the three presented networks almost the best results is obtained from the FFT and wavelet data representations with 0.5% accuracy variations.
引用
收藏
页码:180 / 192
页数:12
相关论文
共 50 条
  • [1] Spectrum Monitoring Based on End-to-End Learning by Deep Learning
    Rahmani, Mahdiyeh
    Ghazizadeh, Reza
    INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2022, 29 (02) : 180 - 192
  • [2] End-to-End Learning From Spectrum Data A Deep Learning Approach for Wireless Signal Identification in Spectrum Monitoring Applications
    Kulin, Merima
    Kazaz, Tarik
    Moerman, Ingrid
    De Poorter, Eli
    IEEE ACCESS, 2018, 6 : 18484 - 18501
  • [3] Machine Learning and End-to-End Deep Learning for Monitoring Driver Distractions From Physiological and Visual Signals
    Gjoreski, Martin
    Gams, Matja S.
    Lustrek, Mitja
    Genc, Pelin
    Garbas, Jens-U.
    Hassan, Teena
    IEEE ACCESS, 2020, 8 (08) : 70590 - 70603
  • [4] End-to-End Deep Learning of Optical Fiber Communications
    Karanov, Boris
    Chagnon, Mathieu
    Thouin, Felix
    Eriksson, Tobias A.
    Buelow, Henning
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) : 4843 - 4855
  • [5] End-to-End Deep Learning Framework for Speech Paralinguistics Detection Based on Perception Aware Spectrum
    Cai, Danwei
    Ni, Zhidong
    Liu, Wenbo
    Cai, Weicheng
    Li, Gang
    Li, Ming
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 3452 - 3456
  • [6] Deep Learning-Based End-to-End Carrier Signal Detection in Broadband Power Spectrum
    Huang, Hao
    Wang, Peng
    Wang, Jiao
    Li, Jianqing
    ELECTRONICS, 2022, 11 (12)
  • [7] End-to-End Deep Learning for Robotic Following
    Pierre, John M.
    ICMSCE 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON MECHATRONICS SYSTEMS AND CONTROL ENGINEERING, 2015, : 77 - 85
  • [8] End-to-end Deep Learning of Optimization Heuristics
    Cummins, Chris
    Petoumenos, Pavlos
    Wang, Zheng
    Leather, Hugh
    2017 26TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT), 2017, : 219 - 232
  • [9] Should end-to-end deep learning replace handcrafted radiomics?
    Buvat, Irene
    Dutta, Joyita
    Jha, Abhinav K.
    Siegel, Eliot
    Yousefirizi, Fereshteh
    Rahmim, Arman
    Bradshaw, Tyler
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2025,
  • [10] Predicting Influenza A Tropism with End-to-End Learning of Deep Networks
    Scarafoni, Dan
    Telfer, Brian A.
    Ricke, Darrell O.
    Thornton, Jason R.
    Comolli, James
    HEALTH SECURITY, 2019, 17 (06) : 468 - 476