The unique trace property of n-periodic product of groups

被引:0
作者
V. S. Atabekyan
A. L. Gevorgyan
Sh. A. Stepanyan
机构
[1] Yerevan State University,
[2] Russian-Armenian University,undefined
来源
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) | 2017年 / 52卷
关键词
Periodic group; periodic product of groups; automorphism group; reduced C*-algebra of a group;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the unique trace property of C*-algebras of n-periodic products of arbitrary family of groups without involutions. We show that the free Burnside groups B(m, n) and their automorphism groups also possess the unique trace property. Also, we show that every countable group is embedded into some 3-generated group with the unique trace property, while every countable periodic group of bounded period and without involutions is embedded into some 3- generated periodic group G of bounded period with the unique trace property. Moreover, as a group G can be chosen both simple and not simple group.
引用
收藏
页码:161 / 165
页数:4
相关论文
共 19 条
[1]  
Powers R.T.(1975)Simplicity of the DukeMath. J. 42 151-156
[2]  
Olshanskii A.Y.u.(2014)*-algebra associated with the free group on two generators Groups 8 933-983
[3]  
Osin D.V.(2007)*-simple groups without free subgroups Bull. Lond.Math. Soc. 39 1-26
[4]  
de la Harpe P.(1957)On simplicity of reduced Illinois J.Math. 1 509-544
[5]  
Day M.M.(1982)*-algebras of groups Izv. Akad. Nauk SSSR Ser. Mat. 46 1139-1149
[6]  
Adian S.I.(2009)Amenable semigroups Izvestiya:Mathematics 73 861-892
[7]  
Atabekyan V.S.(2016)Random walks on free periodic groups MathematicalNotes 99 631-635
[8]  
Adian S.I.(1976)On subgroups of free Burnside groups of odd exponent n = 1003 Trudy MIAN SSSR 142 3-21
[9]  
Atabekyan V.S.(2010)*-Simplicity of n-Periodic Products Mat. Zametki 88 803-810
[10]  
Adian S.I.(2015)Periodic products of groups Proc. Steklov Inst.Math. 289 33-71