Structure of finite groups with S-quasinormal third maximal subgroups

被引:0
作者
Yu. V. Lutsenko
A. N. Skiba
机构
[1] Gomel University,
来源
Ukrainian Mathematical Journal | 2009年 / 61卷
关键词
Normal Subgroup; Finite Group; Cyclic Group; Maximal Subgroup; Nilpotent Group;
D O I
暂无
中图分类号
学科分类号
摘要
We study finite groups whose 3-maximal subgroups are permutable with all Sylow subgroups.
引用
收藏
页码:1915 / 1922
页数:7
相关论文
共 11 条
  • [1] Huppert B(1954)Normalteiler und maximale Untergruppen endlicher Gruppen Math. Z. 60 409-434
  • [2] Janko Z(1963)Finite groups with invariant fourth maximal subgroups Math. Z. 82 82-89
  • [3] Janko Z(1964)Finite simple groups with short chains of subgroups Math. Z. 84 428-437
  • [4] Agrawal RK(1976)Generalized center and hypercenter of a finite group Proc. Amer. Math. Soc. 54 13-21
  • [5] Mann A(1968)Finite groups whose n-maximal subgroups are subnormal Trans. Amer. Math. Soc. 132 395-409
  • [6] Asaad M(1989)Finite groups some of whose n-maximal subgroups are normal Acta Math. Hung. 54 9-27
  • [7] Lutsenko Yu. V.(2009)Finite nonnilpotent groups with normal or S-quasinormal n-maximal subgroups Izv. Gomel Univ. 1 134-138
  • [8] Skiba A. N.(1957)The nonexistence of a certain type of simple groups of odd order Proc. Amer. Math. Soc. 8 686-695
  • [9] Suzuki M(1962)Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen Math. Z. 79 422-424
  • [10] Janko Z(1962)Sylow-Gruppen und Subnormalteiler endlicher Gruppen Math. Z. 78 205-221