Matching-Star Ramsey Minimal Graphs

被引:1
作者
Muhshi H. [1 ]
Baskoro E.T. [1 ]
机构
[1] Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesa 10, Bandung
关键词
Finite Ramsey set; Matching; Ramsey minimal graph; Star;
D O I
10.1007/s11786-015-0244-y
中图分类号
学科分类号
摘要
Let G and H be any graphs without isolated vertices. The Ramsey set $${mathcal{R}(G,H)}$$R(G,H) consists of all graphs F without isolated vertices such that $${F rightarrow (G,H)}$$F→(G,H) and $${F-e nrightarrow(G,H)}$$F-e↛(G,H) for every $${e in E(F)}$$e∈E(F). In this paper, we give necessary and sufficient conditions of graphs belonging to the set $${mathcal{R}(3K_2,K_{1,n})}$$R(3K2,K1,n), for any n ≥ 3. Furthermore, by using computational approach, we determine all Ramsey $${(3K_2,K_{1,n})}$$(3K2,K1,n)-minimal graphs of order at most 10 vertices for $${3 leq n leq 7}$$3≤n≤7. We construct two classes of bipartite graphs in $${mathcal{R}(3K_2,K_{1,n})}$$R(3K2,K1n), for any $${n geq 3}$$n≥3. We also present a class of graphs containing a clique of six vertices in this set. We give large classes of graphs in the set $${mathcal{R}(t K_2, K_{1,n})}$$R(tK2,K1,n), for $${n geq 3}$$n≥3 and $${t geq 4}$$t≥4, that are constructed from t disjoint stars. © 2015, Springer Basel.
引用
收藏
页码:443 / 452
页数:9
相关论文
共 5 条
  • [1] Burr S.A., Erdos P., Faudree R.J., Schelp R.H., A class of Ramsey-finite graphs, Congr. Numer., 21, pp. 171-180, (1978)
  • [2] Burr S.A., Erdos P., Faudree R.J., Rousseau C.C., Schelp R.H., Chartrand G., Ramsey-Minimal Graphs for Matchings, Theory and Applications of Graphs, pp. 159-168, (1981)
  • [3] Mengersen I., Oeckermann J., Matching-star Ramsey sets, Discr. Appl. Math., 95, pp. 417-424, (1999)
  • [4] Muhshi H., Baskoro Edy T., On Ramsey (3K<sub>2</sub>, P<sub>3</sub>)-minimal graphs, AIP Conf. Proc., 1450, pp. 110-117, (2012)
  • [5] Rosta V., Ramsey theory applications. Electron. J. Combin, #DS13, (2004)