Projective Dimension and Regularity of Powers of Edge Ideals of Vertex-Weighted Rooted Forests

被引:0
作者
Li Xu
Guangjun Zhu
Hong Wang
Jiaqi Zhang
机构
[1] Soochow University,School of Mathematical Sciences
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Projective dimension; Regularity; Edge ideal; Powers of the edge ideal; Vertex-weighted rooted forest; Primary 13C10; 13D02; Secondary 05E40; 05C20; 05C22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide some exact formulas for the projective dimension and regularity of powers of edge ideals of some vertex-weighted rooted forests. These formulas are functions of the weight of vertices and the number of edges.
引用
收藏
页码:2215 / 2233
页数:18
相关论文
共 52 条
[1]  
Alilooee A(2017)Graded Betti numbers of path ideals of cycles and lines J. Algebra Appl. 17 1850011-1-17
[2]  
Faridi S(2014)The regularity of powers of edge ideals J. Algebr. Combin. 41 303-321
[3]  
Banerjee A(2015)Regularity of powers of forests and cycles J. Algebr. Combin. 42 1077-1095
[4]  
Beyarslan S(1979)The asymptotic nature of the analytic spread Math. Proc. Cambr. Philos. Soc. 86 35-39
[5]  
Hà HT(1999)Asymptotic behaviour of the Castelnuovo–Mumford regularity Compos. Math. 118 243-261
[6]  
Trung TN(2013)Bounds on the regularity and projective dimension of ideals associated to graphs J. Algebr. Combin. 38 37-55
[7]  
Brodmann M(1990)Minimal resolutions of some monomial ideals J. Algebra 129 1-25
[8]  
Cutkosky SD(2001)On the resolution of ideals of fat points J. Algebra 242 92-108
[9]  
Herzog J(2015)A lower bound for depths of powers of edge ideals J. Algebr. Combin. 42 829-848
[10]  
Trung NV(2009)Splittings of monomial ideals Proc. Am. Math. Soc. 137 3271-3282