Ionospheric response to a moderate geomagnetic storm on 14 April 2022 and a partial solar eclipse 30 April 2022

被引:0
作者
Chali Idosa Uga
Ephrem Beshir Seba
机构
[1] Jimma University,Department of Physics, College of Natural Sciences
[2] Ethiopia Ethiopian Space Science and Technology Institute,undefined
来源
Indian Journal of Physics | 2024年 / 98卷
关键词
Geomagnetic storm; Ionospheric response; TEC variations; Partial eclipse;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, the ionospheric response to a moderate geomagnetic storm on April 14, 2022, as well as a partial solar eclipse on April 30, 2022, were studied. The University Navstar Consortium network’s identical dual-frequency Global Positioning System (GPS) receivers were utilized to collect TEC data for the Falkland (-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}51.45∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} N, -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}59.00∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} E), Montevideo (-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}34.90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} N, -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}56.16∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} E), and Santiago (-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}33.44∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} N, -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}70.67∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} E) stations. The results of the study show that the response of the ionospheric TEC to the moderate geomagnetic storm is stronger than the response of the ionospheric TEC during the partial solar eclipse at all three stations. In comparison to the other two stations, Falkland station, which is situated at a higher latitude than other stations, had a greater positive change in TEC during the storm’s main phase, measuring 20 TECU. This change in TEC is strongly correlated with a Dst minimum, increased solar wind speed, and an increased southward interplanetary Bz component. The partial solar eclipse’s impact on TEC is shown to be greater for a station that experienced longer and stronger eclipses. The Santiago station, which has 28% coverage, or 0.4 magnitude, and a 3-h eclipse length, displayed a substantially larger change in TEC than the other stations. The station with 7.8% coverage and a 0.1 eclipse magnitude showed no appreciable change in TEC.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 270 条
[1]  
Johnson R(2006)Facta universitatis-series: Physics Icarus 180 393-undefined
[2]  
Golubkov G(2011)Proceedings of the Royal Society A: Mathematical Russian Journal of Physical Chemistry B 5 406-undefined
[3]  
Manzhelii M(2006)Mid-Latitude Dynamics and Disturbances Chemistry and Technology 4 83-undefined
[4]  
Karpov I(2020)undefined Romanian Journal of Physics 65 813-undefined
[5]  
Tasić M(2006)undefined Journal of atmospheric and solar-terrestrial physics 68 769-undefined
[6]  
Rajšić S(2002)undefined Journal of atmospheric and solar-terrestrial physics 64 697-undefined
[7]  
Novaković V(2010)undefined Physical and Engineering Sciences 466 3391-undefined
[8]  
Mijić Z(2014)undefined Advances in Space Research 54 185-undefined
[9]  
Koshovyy V(2012)undefined Indian Journal of Physics 86 563-undefined
[10]  
Ivantyshyn O(2000)undefined IEEE transactions on plasma science 28 1818-undefined