Impact of MeV Ni Ion-Implanted Defects in Band Modification of MgO

被引:0
|
作者
Sourav Bhakta
Subhadip Pradhan
Ashis K. Nandy
Pratap K. Sahoo
机构
[1] National Institute of Science Education and Research Bhubaneswar,School of Physical Sciences
[2] An OCC of Homi Bhabha National Institute,undefined
来源
Journal of Electronic Materials | 2023年 / 52卷
关键词
Defect; band gap; MgO; ion implantation;
D O I
暂无
中图分类号
学科分类号
摘要
The creation and annihilation of defects are fundamental concepts in device fabrication. This report studies the influence of defect centers in MgO single crystals created by MeV Ni ion implantation at different fluences on its optical properties. The color centers were quantified and characterized by absorption and photoluminescence spectroscopy. The various defect centers, such as substitutional defect states, F, F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2$$\end{document}, other oxygen vacancies, and V centers, create electronic states inside the wide band gap of MgO. As a function of ion fluence, the concentration of F and F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2$$\end{document} centers monotonically increases to a mean value of 8×1017\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\times 10^{17}$$\end{document} /cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} and of 2×1016\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 10^{16}$$\end{document} /cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}, respectively, for the highest fluence. Density functional theory calculation assists in understanding the evolution of electronic band structure for vacancies and substitutional defects consisting of MgO structures. The tunable optical properties with controlled production of defect centers by ion implantation in MgO can potentially apply in optoelectronic devices.[graphic not available: see fulltext]
引用
收藏
页码:1937 / 1947
页数:10
相关论文
共 50 条
  • [21] Depth dependence of defects in ion-implanted Si probed by a positron beam
    Fujinami, M
    Miyagoe, T
    Sawada, T
    Suzuki, R
    Ohdaira, T
    Akahane, T
    POSITRON ANNIHILATION, ICPA-13, PROCEEDINGS, 2004, 445-6 : 78 - 80
  • [22] Study of defects in ion-implanted silicon using photoluminescence and positron annihilation
    Harding, R
    Davies, G
    Coleman, PG
    Burrows, CP
    Wong-Leung, J
    PHYSICA B-CONDENSED MATTER, 2003, 340 : 738 - 742
  • [23] Defects in ion implanted and electron irradiated MgO and Al2O3
    Averback, RS
    Ehrhart, P
    Popov, AI
    vonSambeek, A
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1995, 136 (1-4): : 169 - 173
  • [24] Effect of indentation and annealing on 2 MeV Cu ion-implanted SiO2
    Pan, Jin
    Wang, H.
    Takeda, Y.
    Umeda, N.
    Kono, K.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 257 : 585 - 588
  • [25] Spatial distribution of defects in ion-implanted and annealed Si: The Rp/2 effect
    Kogler, R
    Yankov, RA
    Kaschny, JR
    Posselt, M
    Danilin, AB
    Skorupa, W
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1998, 142 (04) : 493 - 502
  • [26] A hot implantation study on the evolution of defects in He ion implanted MgO(100)
    Fedorov, AV
    van Huis, MA
    van Veen, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2002, 191 : 452 - 455
  • [27] Application of time-domain vibrational spectroscopy to the study of defects in ion-implanted materials
    Kitajima, M
    Hase, M
    Ishioka, K
    Ushida, K
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 206 : 99 - 102
  • [28] Annealing studies of cluster defects in ion-implanted silicon using high resolution DLTS
    Gad, M. A.
    Evans-Freeman, J. H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 253 (1-2) : 85 - 89
  • [29] Abnormal distribution of defects introduced into MgO single crystals by MeV ion implantation
    Ogiso, H
    Nakano, S
    Akedo, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 206 : 157 - 161
  • [30] Annealing properties of defects in ion-implanted 3C-SiC studied using monoenergetic positron beams
    Uedono, A
    Itoh, H
    Ohshima, T
    Suzuki, R
    Ohdaira, T
    Tanigawa, S
    Aoki, Y
    Yoshikawa, M
    Nashiyama, I
    Mikado, T
    Okumura, H
    Yoshida, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1997, 36 (11): : 6650 - 6660