Logarithmic corrections to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = {4} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = {8} $$\end{document} black hole entropy: a one loop test of quantum gravity

被引:0
|
作者
Shamik Banerjee
Rajesh Kumar Gupta
Ipsita Mandal
Ashoke Sen
机构
[1] Stanford University,Dept. of Physics
[2] Utrecht University,Institute of Theoretical Physics
[3] Harish-Chandra Research Institute,undefined
关键词
Black Holes in String Theory; Superstrings and Heterotic Strings;
D O I
10.1007/JHEP11(2011)143
中图分类号
学科分类号
摘要
We compute logarithmic corrections to the entropy of supersymmetric extremal black holes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = {4} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = {8} $$\end{document} supersymmetric string theories and find results in perfect agreement with the microscopic results. In particular these logarithmic corrections vanish for quarter BPS black holes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = {4} $$\end{document}supersymmetric theories, but has a finite coefficient for 1/8 BPS black holes in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = {8} $$\end{document} supersymmetric theory. On the macroscopic side these computations require evaluating the one loop determinant of massless fields around the near horizon geometry, and include, in particular, contributions from dynamical four dimensional gravitons propagating in the loop. Thus our analysis provides a test of one loop quantum gravity corrections to the black hole entropy, or equivalently of the AdS2/CF T1 correspondence. We also extend our analysis to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = {2} $$\end{document}supersymmetric STU model and make a prediction for the logarithmic correction to the black hole entropy in that theory.
引用
收藏
相关论文
共 50 条