Light is a key environmental cue that fundamentally regulates all aspects of plant growth and development, which is mediated by the multiple photoreceptors including the blue light photoreceptors cryptochromes (CRYs). In Arabidopsis, there are two well-characterized homologous CRYs, CRY1 and CRY2. Whereas CRYs are flavoproteins, they lack photolyase activity and are characterized by an N-terminal photolyase-homologous region (PHR) domain and a C-terminal extension domain. It has been established that the C-terminal extension domain of CRYs is involved in mediating light signaling through direct interactions with the master negative regulator of photomorphogenesis, COP1. Recent studies have revealed that the N-terminal PHR domain of CRYs is also involved in mediating light signaling. In this review, we mainly summarize and discuss the recent advances in CRYs signaling mediated by the N-terminal PHR domain, which involves the N-terminal PHR domain-mediated dimerization/oligomerization of CRYs and physical interactions with the pivotal transcription regulators in light and phytohormone signaling.