Semigroups on Frechet spaces and equations with infinite delays

被引:0
作者
T Sengadir
机构
[1] SSN College of Engineering,Department of Mathematics
来源
Proceedings Mathematical Sciences | 2007年 / 117卷
关键词
Functional differential equation; infinite delay; semigroup; Frechet space;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.
引用
收藏
页码:71 / 84
页数:13
相关论文
共 17 条
[1]  
Atkinson F. V.(1988)On determining phase spaces for functional differential equations Funkcialaj Ekvacioj 31 331-347
[2]  
Haddock J. R.(1991)An integro-differential equation from population genetics and perturbations of differentiable semigroups in Frechet spaces Proc. R. Soc. Edin. 118A 63-73
[3]  
Burger R.(1985)-semigroups on a locally convex space J. Math. Anal. Appl. 106 293-320
[4]  
Choe Y. H.(1989)Asymptotic constancy for linear neutral Volterra integrodifferential equations Tohuku Math. J. 41 689-710
[5]  
Haddock J. R.(1990)On the location of positive limit sets for autonomous functional differential equations with infinite delay J. Diff. Eqns 86 1-31
[6]  
Nkashama M. N.(1978)Phase spaces for retarded equations with infinite delay Funkcial Ekvac. 21 11-41
[7]  
Wu J.(1982)The inverse function theorem of Nash and Moser Bull. Am. Math. Soc. 7 1-64
[8]  
Haddock J.(1988)The Hille-Yosida space of an arbitrary operator J. Math. Anal. Appl. 136 107-111
[9]  
Terjeki J.(1968)Semigroups of operators in locally convex spaces J. Funct. Anal. 2 258-296
[10]  
Hale J. K.(1994)Ordinary differential equations in locally convex spaces Usp. Mat. Nauk. 49 93-168