Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA)Impact du climat, de la dimension du lac, de l’écoulement de l’eau supra-et infra-pergélisol sur l’évolution d’un lac de talik, Yukon Flats, Alaska, USAImpactos del clima, tamaño del lago y flujo subterráneo del supra y sub permafrost en la evolución del talik de un lago, Yukon Flats, Alaska (EEUU)气候、湖泊规模和永久冻土层上下的地下水流对阿拉斯加州育空平原(美国)湖泊-层间不冻层演化的影响Impacto do clima, dimensão do lago e fluxo de água subterrânea acima e sob o permafrost na evolução da associação lago-talik, Yukon Flats, Alaska (EUA)

被引:0
作者
Tristan P. Wellman
Clifford I. Voss
Michelle A. Walvoord
机构
[1] US Geological Survey,Colorado Water Science Center
[2] Denver Federal Center,National Research Program
[3] US Geological Survey,National Research Program
[4] US Geological Survey,undefined
[5] Denver Federal Center,undefined
关键词
Cold-regions; Permafrost; Groundwater modeling; Climate change; Alaska (USA);
D O I
10.1007/s10040-012-0941-4
中图分类号
学科分类号
摘要
In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze–thaw physics is used to examine the effect of climate, lake size, and lake–groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ∼200 to > 1,000  years (vertical thaw rates < 0.1–0.5  m yr−1). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost.
引用
收藏
页码:281 / 298
页数:17
相关论文
共 87 条
  • [1] Anderson L(2001)Holocene climate inferred from oxygen isotope ratios in lake sediments, Central Brooks Range, Alaska Quat Res 55 313-321
  • [2] Abbott MB(2011)Lake carbonate-δ Quat Sci Rev 30 887-898
  • [3] Finney BP(2002)O records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns Can J Earth Sci 39 1281-1298
  • [4] Anderson L(2005)Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada Permafr Periglac Process 16 355-367
  • [5] Finney BP(1993)Lake-bottom thermal regimes, western Arctic coast, Canada Bull Am Meteorol Soc 74 33-47
  • [6] Shapley MP(2007)Recent variations of sea ice and air temperatures in high latitudes J Clim 20 609-632
  • [7] Burn CR(2010)Simulations of Arctic temperature and pressure by global coupled models Quat Sci Rev 29 928-939
  • [8] Burn CR(2005)An oxygen-isotope record of Holocene climate change in the south-central Brooks Range, Alaska Clim Chang 72 251-298
  • [9] Chapman WL(2010)Evidence and implications of recent climate change in Northern Alaska and other Arctic regions Can J For Res 40 1219-1236
  • [10] Walsh JE(2005)Resilience and vulnerability of permafrost to climate change Cold Reg Sci Technol 42 63-77