共 50 条
- [31] Function Values Are Enough for L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-Approximation Foundations of Computational Mathematics, 2021, 21 (4) : 1141 - 1151
- [32] Numerical and theoretical approximation results for Schurer–Stancu operators with shape parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lambda $$\end{document} Computational and Applied Mathematics, 2022, 41 (4)
- [33] On an Interpolation Problem with the Smallest subscript𝐿2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document}-Norm of the Laplace Operator Proceedings of the Steklov Institute of Mathematics, 2022, 319 (Suppl 1) : S193 - S203
- [34] C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} interpolation splines over type-1 triangulations with shape parameters Computational and Applied Mathematics, 2021, 40 (8)
- [35] Lp(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathbb {R}^d)$$\end{document} Boundedness for a Class of Nonstandard Singular Integral Operators Journal of Fourier Analysis and Applications, 2024, 30 (5)
- [36] Interpolation and Approximation by Symplectic Holomorphic Self-Maps of C2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{2n}$$\end{document} The Journal of Geometric Analysis, 2024, 34 (12)
- [37] On interpolation and embedding theorems for the Spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathop \mathfrak{B}\limits^ \star $$\end{document}pτσq(Ω) Mathematical Notes, 2008, 84 (5-6) : 733 - 736
- [38] The commuting local Hamiltonian problem on locally expanding graphs is approximable in NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf{{NP}}$$\end{document} Quantum Information Processing, 2015, 14 (1) : 83 - 101
- [39] Approximation to the global solution of generalized Zakharov equations in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{R}^{2}$\end{document} Journal of Inequalities and Applications, 2018 (1)
- [40] Multivariate numerical approximation using constructive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^{2} (\mathbb{R}) $$\end{document} RBF neural network Neural Computing and Applications, 2012, 21 (1) : 25 - 34