A class of blending functions with C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{\infty }$\end{document} smoothness

被引:0
|
作者
Yuanpeng Zhu
机构
[1] South China University of Technology,School of Mathematics
关键词
Blending function; Smoothness; Shape parameter; Interpolation; Approximation;
D O I
10.1007/s11075-020-01049-7
中图分类号
学科分类号
摘要
In this work, by combining a class of local support and infinitely differentiable functions together with the sinc function, we construct a new class of univariate blending functions with three local shape parameters αi, βi, and λi. The new blending functions have the properties of C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{\infty }$\end{document} smoothness, compact support, and partition of unity. The shape parameter αi has tension property, and βi can adjust the support of the blending functions. With λi, the given blending functions can be used to interpolate sets of points partly or entirely without solving a linear system of equations. Some simple conditions for the blending functions possessing nonnegativity and/or linear independence are developed. Based on the new univariate blending functions, tensor product blending functions and local tensor product blending functions are also developed.
引用
收藏
页码:555 / 582
页数:27
相关论文
共 50 条