共 12 条
[1]
Spesivtsev L.V., Ushakov V.N., Constructing the motion of a controlled system in the neighborhood of a given point of the attainable set,” Vestnik Udmur Univ, Math. Series, 1, pp. 111-126, (2006)
[2]
Nikol'skii M.S., On approximation of the attainable set for a differential inclusion, Vestnik MGU, ser. Vychil. Mat. Kiber, 4, pp. 31-34, (1987)
[3]
Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., Mathematical Theory of Optimal Processes [in Russian], Moscow, (1961)
[4]
Kiselev Y.N., Avvakumov S.N., Orlov M.V., Optimal Control, (2007)
[5]
Kiselev Y.N., Construction of exact solutions for the nonlinear time-optimal problem of a special form, Fundamental’naya i Prikladnaya Matematika, 3, 3, pp. 847-868, (1997)
[6]
Avvakumov S.N., Kiselev Y.N., A numerical method to find an optimal solution: the ROST model, Proc. Scientific Seminar, Planernoe, Moscow Oblast, 24–26 January 2003 [in Russian], Moscow, pp. 5-15, (2003)
[7]
Kiselev Y.N., Avvakumov S.N., Orlov M.V., An optimal resource allocation problem in a two-sector economic model with singular modes, Prikl. Mat. Inform., Moscow, 33, pp. 13-68, (2009)
[8]
Kiselev Y.N., Orlov M.V., An optimal resource allocation problem in a two-sector economic model with a Cobb–Douglas production function,” Modern Methods in the Theory of Boundary-Value Problems: Proc. Spring Mathematical School “Pontryagin Readings-XX, [in Russian], Voronezh State University, Voronezh, pp. 85-86, (2009)
[9]
Vdovin S.A., Taras'ev A.M., Ushakov V.N., Construction of attainable sets for Brockett integrator, Prikl. Mat. Mekhan, 68, 5, pp. 707-724, (2004)
[10]
Vinnikov E.V., Numerical construction of the attainable set of nonlinear controlled systems in Matlab environment,” Modern Methods in the Theory of Boundary-Value Problems: Proc. Spring Mathematical School “Pontryagin Readings-XX, [in Russian], Voronezh State University, Voronezh, pp. 35-36, (2009)