The prime number theorem and pair correlation of zeros of the Riemann zeta-function

被引:0
作者
D. A. Goldston
Ade Irma Suriajaya
机构
[1] San Jose State University,Department of Mathematics and Statistics
[2] Kyushu University,Faculty of Mathematics
来源
Research in Number Theory | 2022年 / 8卷
关键词
Prime numbers; Riemann zeta-function; Prime number theorem; 11M06; 11M26; 11N05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the error in the prime number theorem can be quantitatively improved beyond the Riemann Hypothesis bound by using versions of Montgomery’s conjecture for the pair correlation of zeros of the Riemann zeta-function which are uniform in long ranges and with suitable error terms.
引用
收藏
相关论文
共 11 条
  • [1] Ford K(2009)On the distribution of imaginary parts of zeros of the Riemann zeta function, II Math. Ann. 343 487-505
  • [2] Soundararajan K(1980)Some consequences of the Riemann hypothesis Acta Arith. 37 339-343
  • [3] Zaharescu A(1978)Primes and zeros in short intervals J. Reine Angew. Math. 303–304 205-220
  • [4] Gallagher PX(1984)A note on the differences between consecutive primes Math. Ann. 266 317-320
  • [5] Gallagher PX(1982)Gaps between primes, and the pair correlation of zeros of the zeta-function Acta Arith. 41 85-99
  • [6] Mueller JH(1903)Über die Anzahl der Primzahlen unter gegebener Grenze Math. Ann. 57 195-204
  • [7] Goldston DA(1901)Sur la distribution des nombres premiers Acta Math. 24 159-182
  • [8] Heath-Brown DR(undefined)undefined undefined undefined undefined-undefined
  • [9] Heath-Brown DR(undefined)undefined undefined undefined undefined-undefined
  • [10] Schmidt E(undefined)undefined undefined undefined undefined-undefined