On Singular Points of Equations of Mechanics

被引:1
作者
A. P. Ivanov
机构
[1] Moscow Institute of Physics and Technology (State University),
[2] RUDN University,undefined
来源
Doklady Mathematics | 2018年 / 97卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A system of ordinary differential equations whose right-hand side has no limit at some singular point is considered. This situation is typical of mechanical systems with Coulomb friction in a neighborhood of equilibrium. The existence and uniqueness of solutions to the Cauchy problem is analyzed. A key property is that the phase curve reaches the singular point in a finite time. It is shown that the subsequent dynamics depends on the extension of the vector field to the singular point according to the physical interpretation of the problem: systems coinciding at all point, except for the singular one, can have different solutions. Uniqueness conditions are discussed.
引用
收藏
页码:167 / 169
页数:2
相关论文
共 12 条
  • [1] Ivanov A. P.(2008)Stability conditions for a solid resting on a rough stationary plane J. Appl. Math. Mech. 72 372-382
  • [2] Zhukovskii N. E.(1948)undefined Collected Works 1 339-354
  • [3] Smyshlyaev A. S.(2002)undefined J. Appl. Math. Mech. 66 165-170
  • [4] Chernous’ko F. L.(1961)undefined J. Appl. Math. Mech. 25 586-607
  • [5] Pozharitskii G. K.(2015)undefined Dokl. Phys. 60 405-406
  • [6] Ivanov A. P.(2014)undefined Regular Chaotic Dyn. 19 100-115
  • [7] Ivanov A. P.(2015)undefined Math. Notes 98 328-330
  • [8] Ivanov A. P.(2017)undefined Regular Chaotic Dyn. 22 435-447
  • [9] Borisov A. V.(2017)undefined Regular Chaotic Dyn. 22 239-247
  • [10] Mamaev I. S.(2016)undefined Regular Chaotic Dyn. 21 804-810