On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants

被引:0
作者
Jan Manschot
Boris Pioline
Ashoke Sen
机构
[1] Universität Bonn,Bethe Center for Theoretical Physics, Physikalisches Institut
[2] Max Planck Institute for Mathematics,Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589
[3] CERN PH-TH,undefined
[4] CERN,undefined
[5] Université Pierre et Marie Curie,undefined
[6] Harish-Chandra Research Institute,undefined
来源
Journal of High Energy Physics | / 2013卷
关键词
Black Holes in String Theory; Differential and Algebraic Geometry; Black Holes;
D O I
暂无
中图分类号
学科分类号
摘要
In previous work we have shown that the equivariant index of multi-centered \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} black holes localizes on collinear configurations along a fixed axis. Here we provide a general algorithm for enumerating such collinear configurations and computing their contribution to the index. We apply this machinery to the case of black holes described by quiver quantum mechanics, and give a systematic prescription — the Coulomb branch formula — for computing the cohomology of the moduli space of quiver representations. For quivers without oriented loops, the Coulomb branch formula is shown to agree with the Higgs branch formula based on Reineke’s result for stack invariants, even when the dimension vector is not primitive. For quivers with oriented loops, the Coulomb branch formula parametrizes the Poincaré polynomial of the quiver moduli space in terms of single-centered (or pure-Higgs) BPS invariants, which are conjecturally independent of the stability condition (i.e. the choice of Fayet-Iliopoulos parameters) and angular-momentum free. To facilitate further investigation we provide a Mathematica package “CoulombHiggs.m” implementing the Coulomb and Higgs branch formulae.
引用
收藏
相关论文
共 58 条
[1]  
Bachas C(1997)F Nucl. Phys. Proc. Suppl. B 55 194-undefined
[2]  
Kiritsis E(1998) terms in N = 4 string vacua Nucl. Phys. B 510 423-undefined
[3]  
Gregori A(1996)R Phys. Lett. B 379 99-undefined
[4]  
Strominger A(2000) corrections and nonperturbative dualities of N = 4 string ground states JHEP 08 050-undefined
[5]  
Vafa C(2002)Microscopic origin of the Bekenstein-Hawking entropy JHEP 10 023-undefined
[6]  
Denef F(2011)Supergravity flows and D-brane stability JHEP 11 127-undefined
[7]  
Denef F(2011)Quantum quivers and Hall/hole halos JHEP 11 129-undefined
[8]  
Bates B(2009)Exact solutions for supersymmetric stationary black hole composites Int. J. Mod. Phys. A 24 4225-undefined
[9]  
Denef F(2009)Split states, entropy enigmas, holes and halos JHEP 08 068-undefined
[10]  
Denef F(2011)Quantum entropy function from AdS JHEP 07 059-undefined