Quasinormal and Hyponormal Weighted Composition Operators on H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} and Aα2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^2_{\alpha }$$\end{document} with Linear Fractional Compositional Symbol

被引:8
作者
Mahsa Fatehi
Mahmood Haji Shaabani
Derek Thompson
机构
[1] Islamic Azad University,Department of Mathematics, Shiraz Branch
[2] Shiraz University of Technology,Department of Mathematics
[3] Taylor University,Department of Mathematics
关键词
Weighted composition operator; Composition operator; Hyponormal; Quasinormal; 47B33;
D O I
10.1007/s11785-017-0683-3
中图分类号
学科分类号
摘要
In this paper, we study quasinormal and hyponormal composition operators Wψ,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\psi ,\varphi }$$\end{document}  with linear fractional compositional symbol φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} on the Hardy and weighted Bergman spaces. We characterize the quasinormal composition operators induced on H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}$$\end{document} and Aα2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\alpha }^{2}$$\end{document} by these maps and many such weighted composition operators, showing that they are necessarily normal in all known cases. We eliminate several possibilities for hyponormal weighted composition operators but also give new examples of hyponormal weighted composition operators on H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} which are not quasinormal.
引用
收藏
页码:1767 / 1778
页数:11
相关论文
共 34 条
  • [1] Bourdon PS(2014)Invertible weighted composition operators Proc. Am. Math. Soc. 142 289-299
  • [2] Bourdon PS(2010)Normal weighted composition operators on the Hardy space J. Math. Anal. Appl. 367 278-286
  • [3] Narayan SK(1988)Linear fractional composition operators on Integral Equ. Oper. Theory 11 151-160
  • [4] Cowen CC(2014)Normal and cohyponormal weighted composition operators on Oper. Theory Adv. Appl. 240 69-85
  • [5] Cowen CC(1966)On majorization, factorization, and range inclusion of operators on Hilbert Space Proc. Am. Math. Soc. 17 413-416
  • [6] Jung S(2017)NORMAL, COHYPONORMAL AND NORMALOID WEIGHTED COMPOSITION OPERATORS ON THE HARDY AND WEIGHTED BERGMAN SPACES Journal of the Korean Mathematical Society 54 599-612
  • [7] Ko E(2015)Some essentially normal weighted composition operators on the weighted Bergman spaces Complex Var. Elliptic Equ. 60 1205-1216
  • [8] Douglas R(2012)Essential normality for certain weighted composition operators on the Hardy space Turk. J. Math. 36 583-595
  • [9] Fatehi Mahsa(2011)Invertible weighted composition operators J. Funct. Anal. 261 831-860
  • [10] Shaabani Mahmood Haji(2013)Spectra of weighted composition operators with automorphic symbols Journal of Functional Analysis 265 1749-1777