Inversion formulas for the short-time Fourier transform

被引:0
作者
Hans G. Feichtinger
Ferenc Weisz
机构
[1] University of Vienna,Numerical Harmonic Analysis Group, Faculty of Mathematics
[2] Eötvös L. University,Department of Numerical Analysis
来源
The Journal of Geometric Analysis | 2006年 / 16卷
关键词
42B08; 42C15; 42C40; 42A38; 46B15; Wiener amalgam spaces; Herz spaces; -summability; short-time Fourier transform; time-frequency analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The inversion formula for the short-time Fourier transform is usually considered in the weak sense, or only for specific combinations of window functions and function spaces such as L2. In the present article the so-called θ-summability (with a function parameter θ) is considered which induces norm convergence for a large class of function spaces. Under some conditions on θ we prove that the summation of the short-time Fourier transform of ƒ converges to ƒ in Wiener amalgam norms, hence also in the Lp sense for Lp functions, and pointwise almost everywhere.
引用
收藏
页码:507 / 521
页数:14
相关论文
共 14 条
[1]  
Carleson L.(1966)On convergence and growth of partial sums of Fourier series Acta Math. 116 135-157
[2]  
Fefferman C.(1971)On the convergence of multiple Fourier series Bull. Amer. Math. Soc. 77 744-745
[3]  
Feichtinger H. G.(1988)An elementary approach to Wiener’s third Tauberian theorem for the Euclidean Symp. Math. XXIX 267-301
[4]  
Garcia-Cuerva J.(1994)-space Proc. London Math. Soc. 69 605-628
[5]  
Herrero M.-J. L.(2001)A theory of Hardy spaces associated to the Herz spaces Studia Math. 146 15-33
[6]  
Gröchenig K.(2002)Gabor meets Littlewood-Paley: Gabor expansions in L Sampl. Theory Signal Image Process 1 225-259
[7]  
Heil C.(1989)(R SIAM Rev. 31 628-666
[8]  
Gröchenig K.(1968)) J. Math. Mech. 18 283-324
[9]  
Heil C.(1998)Gabor analysis in weighted amalgam spaces East J. Appr. 4 491-503
[10]  
Okoudjou K.(undefined)Continuous and discrete wavelet transforms undefined undefined undefined-undefined