A new S-type upper bound for the largest singular value of nonnegative rectangular tensors

被引:0
作者
Jianxing Zhao
Caili Sang
机构
[1] Guizhou Minzu University,College of Data Science and Information Engineering
来源
Journal of Inequalities and Applications | / 2017卷
关键词
nonnegative tensor; rectangular tensor; singular value; 15A18; 15A42; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
By breaking N={1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N=\{1,2,\ldots,n\}$\end{document} into disjoint subsets S and its complement, a new S-type upper bound for the largest singular value of nonnegative rectangular tensors is given and proved to be better than some existing ones. Numerical examples are given to verify the theoretical results.
引用
收藏
相关论文
共 31 条
[1]  
Knowles JK(1975)On the ellipticity of the equations of non-linear elastostatics for a special material J. Elast. 5 341-361
[2]  
Sternberg E(1996)A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media J. Elast. 44 89-96
[3]  
Wang Y(2007)A tensor product matrix approximation problem in quantum physics Linear Algebra Appl. 420 711-725
[4]  
Aron M(1935)Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777-780
[5]  
Dahl D(2010)Singular values of a real rectangular tensor J. Math. Anal. Appl. 370 284-294
[6]  
Leinass JM(2011)Singular values of nonnegative rectangular tensors Front. Math. China 6 363-378
[7]  
Myrheim J(2009)On eigenvalue problems of real symmetric tensors J. Math. Anal. Appl. 350 416-422
[8]  
Ovrum E(2016)Bound for the largest singular value of nonnegative rectangular tensors Open Math. 14 761-766
[9]  
Einstein A(2016)An Open Math. 14 925-933
[10]  
Podolsky B(2016)-type upper bound for the largest singular value of nonnegative rectangular tensors Linear Algebra Appl. 493 469-483