A Homotopy Alternating Direction Method of Multipliers for Linearly Constrained Separable Convex Optimization

被引:2
作者
Yang J. [1 ]
Dai Y.-Q. [2 ]
Peng Z. [2 ]
Zhuang J.-P. [2 ]
Zhu W.-X. [2 ]
机构
[1] Hunan Vocational Institute of Safety Technology, Changsha
[2] College of Mathematics and Computer Science, Fuzhou University, Fuzhou
基金
中国国家自然科学基金;
关键词
Alternating direction method of multipliers; Homotopy method; Proximal point algorithm; Separable convex optimization;
D O I
10.1007/s40305-017-0170-6
中图分类号
学科分类号
摘要
Linearly constrained separable convex minimization problems have been raised widely in many real-world applications. In this paper, we propose a homotopy-based alternating direction method of multipliers for solving this kind of problems. The proposed method owns some advantages of the classical proximal alternating direction method of multipliers and homotopy method. Under some suitable conditions, we prove global convergence and the worst-case O(1k) convergence rate in a nonergodic sense. Preliminary numerical results indicate effectiveness and efficiency of the proposed method compared with some state-of-the-art methods. © 2017, Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:271 / 290
页数:19
相关论文
共 21 条
[1]  
Yang J.F., Zhang Y., Alternating direction algorithms for ℓ<sub>1</sub> -problems in compressive sensing, SIAM J. Sci. Comput., 33, 1, pp. 250-278, (2011)
[2]  
Peng Z., Wu D.H., An inexact parallel splitting augmented Lagrangian method for large system of linear equations, Appl. Math. Comput., 216, 5, pp. 1624-1636, (2010)
[3]  
Wang Y.L., Yang J.F., Yin W.T., Zhang Y., A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1, 3, pp. 248-272, (2008)
[4]  
Yang J.F., Zhang Y., Yin W.T., An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31, 4, pp. 2842-2865, (2009)
[5]  
Alternating direction methods for sparse covariance selection.
[6]  
Ma S.Q., Alternating direction method of multipliers for sparse principal component analysis, J. Oper. Res. Soc. China, 1, 2, pp. 253-274, (2013)
[7]  
Kadkhodaie M., Sanjabi M., Luo Z.Q., On the linear convergence of the approximate proximal splitting method for non-smooth convex optimization, J. Oper. Res. Soc. China, 2, 2, pp. 123-141, (2014)
[8]  
Huang Y.Y., Liu S.Y., Proximal-based pre-correction decomposition methods for structured convex minimization problems, J. Oper. Res. Soc. China, 2, 2, pp. 223-235, (2014)
[9]  
Peaceman D.W., Rachford H.H., The numerical solution of parabolic and elliptic differential equations, SIAM J. Appl. Math., 3, 1, pp. 28-41, (1955)
[10]  
Douglas J., Rachford H.H., On the numerical solution of the heat conduction problem in 2 and 3 space variables, Trans. Am. Math. Soc., 82, pp. 421-439, (1956)