We prove that, if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\Delta_{1}$$
\end{document} is the Hodge Laplacian acting on differential 1-forms on the (2n + 1)-dimensional Heisenberg group, and if m is a Mihlin–Hörmander multiplier on the positive half-line, with L2-order of smoothness greater than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$n + \frac{1}{2}$$
\end{document} , then m(Δ1) is Lp-bounded for 1 < p < ∞. Our approach leads to an explicit description of the spectral decomposition of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\Delta_{1}$$
\end{document} on the space of L2-forms in terms of the spectral analysis of the sub-Laplacian L and the central derivative T, acting on scalar-valued functions.