Biomass derived activated carbon-based high-performance electrodes for supercapacitor applications

被引:0
|
作者
T. Manimekala
R. Sivasubramanian
S. Karthikeyan
Gnanaprakash Dharmalingam
机构
[1] PSG Institute of Advanced Studies,Electrochemical Sensors and Energy Materials Laboratory
[2] PSG Institute of Advanced Studies,Plasmonic Nanomaterials Laboratory
[3] Chikkana Government Arts College,Department of Chemistry
来源
关键词
Activated carbon; Supercapacitor; Cyclic voltammetry; Capacitance; Cyclic stability;
D O I
暂无
中图分类号
学科分类号
摘要
Biomass-derived activated carbon has been prepared from a bio-source (peanut shells) and investigated as an electrode material for supercapacitors. The biomass-derived carbon was prepared by the hydrothermal method and activated using KOH. The material was characterized using a transmission electron microscope, scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscopy respectively. The surface area of the prepared material was analysed using Brunauer–Emmett–Teller technique. Electrochemical studies were carried out in both three and two-electrode configurations. From cyclic voltammetric studies, the electrical double layer capacitance behavior of the electrode was analysed. The specific capacitance estimated from galvanostatic charge–discharge (GCD) studies was 247 F/g at a current density of 0.25 A/g. Kinetic studies revealed more of a capacitive contribution to the diffusion component. A symmetric supercapacitor was fabricated in a Swagelok cell and the device characteristics were analysed. The cell voltage was found to be 0–1 V and the specific capacitance estimated from GCD was found to be 98 F/g at a current density of 0.25 A/g. Finally, cyclic stability studies were carried out for 5000 and 20,000 cycles and remarkable capacitance retention of 90% and 97%was obtained in the three and two-electrode configurations respectively. In addition voltage holding test was performed in the voltage range of 0.8 to 1.2 V to ascertain the stability of the supercapacitor. The changes at the electrode–electrolyte interface were analysed by electrochemical impedance spectroscopy.
引用
收藏
页码:289 / 301
页数:12
相关论文
共 50 条
  • [1] Biomass derived activated carbon-based high-performance electrodes for supercapacitor applications
    Manimekala, T.
    Sivasubramanian, R.
    Karthikeyan, S.
    Dharmalingam, Gnanaprakash
    JOURNAL OF POROUS MATERIALS, 2023, 30 (01) : 289 - 301
  • [2] Biomass-Derived Activated Carbon for High-Performance Supercapacitor Electrode Applications
    Merin, Pulikkottil
    Joy, P. Jimmy
    Muralidharan, M. N.
    Gopalan, E. Veena
    Seema, Ansari
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (05) : 844 - 851
  • [3] Biomass-derived carbon materials for high-performance supercapacitor electrodes
    Ruan, Changping
    Ai, Kelong
    Lu, Lehui
    RSC ADVANCES, 2014, 4 (58): : 30887 - 30895
  • [4] Fabrication of biowaste derived carbon-carbon based electrodes for high-performance supercapacitor applications
    Mitravinda, Tadepalli
    Karthik, Mani
    Anandan, Srinivasan
    Sharma, Chandra Shekar
    Rao, Tata Narasinga
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2020, 27 (06) : 1080 - 1090
  • [5] Biomass-derived nanostructured carbon materials for high-performance supercapacitor electrodes
    Ebrahimi, Mehrnaz
    Hosseini-Monfared, Hassan
    Javanbakht, Mehran
    Mahdi, Fatemeh
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (15) : 17363 - 17380
  • [6] Biomass-Derived Activated Carbon Nanoarchitectonics with Hibiscus Flowers for High-Performance Supercapacitor Electrode Applications
    Yan, Dong
    Liu, Lu
    Wang, Xingyan
    Xu, Ke
    Zhong, Jinghan
    CHEMICAL ENGINEERING & TECHNOLOGY, 2022, 45 (04) : 649 - 657
  • [7] Biomass porous carbon-based composite for high performance supercapacitor
    Wang, Huilin
    Wen, Jie
    MATERIALS RESEARCH EXPRESS, 2020, 7 (11)
  • [8] Natural Biomass Derived Microporous Activated Carbon Electrodes for Highly Efficient Supercapacitor Applications
    Ajay, Kalale Mahadeva Shetty
    Dinesh, Muniyappa Nanjundaiah
    Yashaswini, Manjappa
    Gopalakrishna, Byatarayappa
    Kathyayini, Nagaraju
    Sundarayya, Yanamandra
    Vijeth, Hebri
    CHEMISTRYSELECT, 2022, 7 (37):
  • [9] Utilizing rubber plant leaf petioles derived activated carbon for high-performance supercapacitor electrodes
    Niaz F.
    Shah S.S.
    Hayat K.
    Aziz M.A.
    Liu G.
    Iqbal Y.
    Oyama M.
    Industrial Crops and Products, 2024, 219
  • [10] Highly Porous Willow Wood-Derived Activated Carbon for High-Performance Supercapacitor Electrodes
    Phiri, Josphat
    Dou, Jinze
    Vuorinen, Tapani
    Gane, Patrick A. C.
    Maloney, Thaddeus C.
    ACS OMEGA, 2019, 4 (19): : 18108 - 18117