q-Classical Orthogonal Polynomials: A General Difference Calculus Approach

被引:0
作者
R. S. Costas-Santos
F. Marcellán
机构
[1] University of California,Department of Mathematics
[2] Universidad Carlos III de Madrid,Departamento de Matemáticas
来源
Acta Applicandae Mathematicae | 2010年 / 111卷
关键词
Classical orthogonal polynomials; Discrete orthogonal polynomials; -Polynomials; Characterization theorems; Rodrigues operator; 33C45; 33D45;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that the classical families of orthogonal polynomials are characterized as the polynomial eigenfunctions of a second order homogeneous linear differential/difference hypergeometric operator with polynomial coefficients.
引用
收藏
页码:107 / 128
页数:21
相关论文
共 32 条
[1]  
Alfaro M.(2007)A characterization of the classical orthogonal discrete and J. Comput. Appl. Math. 201 48-54
[2]  
Álvarez-Nodarse R.(1992)-polynomials SIAM J. Math. Anal. 3 65-70
[3]  
Al-Salam W.A.(2006)Another characterization of the classical orthogonal polynomials J. Comput. Appl. Math. 196 320-337
[4]  
Chihara T.S.(1999)On characterizations of classical polynomials Integral Trans. Special Funct. 8 299-324
[5]  
Álvarez-Nodarse R.(2006)On the J. Russ. Laser Res. 27 1-32
[6]  
Álvarez-Nodarse R.(1993)-polynomials on the exponential lattice Lett. Math. Phys. 29 123-132
[7]  
Arvesú J.(1991)( Theor. Math. Phys. 85 1055-1062
[8]  
Álvarez-Nodarse R.(1991))= Theor. Math. Phys. 87 442-444
[9]  
Smirnov Yu.F.(1995)+ Constr. Approx. 11 181-226
[10]  
Costas-Santos R.S.(1995)A J. Comput. Appl. Math. 57 147-162