Optimization of basis sets for isoelectronic series of closed-shell atoms in Hartree-Fock-Roothaan calculations

被引:0
作者
Y. B. Malykhanov
R. N. Pravosudov
V. V. Meshkov
机构
[1] M. E. Evseviev Mordovia State Pedagogical Institute,
来源
Journal of Structural Chemistry | 2000年 / 41卷
关键词
Density Matrix; Atomic Orbital; Helium Atom; Virial Relation; Slater Type Orbital;
D O I
暂无
中图分类号
学科分类号
摘要
Optimization of the nonlinear parameters (orbital exponents) of basis functions in Hartree-Fock-Roothaan calculations may be canied out with a high degree of accuracy. A scheme using second-order methods is suggested for optimization of the orbital exponents of Slater type basis functions defining the ground state of closed-shell atoms. An exact fomula is derived for calculating the partial second derivatives of energy with respect to nonlinear parameters in temis of the density matrix. In bases of isoelectronic series, the orbital exponents are shown to be the linear functions of the charge of the ion nucleus. Optimization calculations are reported for He, Be, Ne, and Mg atoms and their isoelectronic series.
引用
收藏
页码:175 / 184
页数:9
相关论文
共 25 条
[1]  
Bokacheva L. P.(1996)undefined Opt. Spektrosk. 81 582-585
[2]  
Semenov S. G.(1974)undefined Atomic Data and Nuclear Data Tables 14 177-177
[3]  
Clementi E.(1993)undefined J. Phys. B: At. Mol. Opt. Phys. 26 2529-2532
[4]  
Roetti C.(1989)undefined Mol. Phys. 68 433-445
[5]  
Koga T.(1996)undefined Can. J. Chem. 74 1526-1534
[6]  
Seki Y.(1996)undefined Int. J. Quant. Chem. 57 321-325
[7]  
Thakkar A. J.(1960)undefined Rev. Mod. Phys. 32 2-17
[8]  
Tatewaki H.(1967)undefined Theor. Chim. Acta (Berl) 8 8-745
[9]  
da Silva A. B. F.(1976)undefined Teor. éksp. Khim. 12 739-33
[10]  
da Costa H. F. M.(1991)undefined Chem. Phys. Lett. 183 31-11