Effect of Solution Treatment on Mechanical and Corrosion Behaviors of 6082-T6 Al Alloy

被引:30
作者
Kumar N. [1 ]
Goel S. [1 ]
Jayaganthan R. [1 ,4 ]
Brokmeier H.-G. [2 ,3 ]
机构
[1] Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee
[2] Institute of Materials Science and Engineering, Clausthal University of Technology, Agricolastrasse 6, Clausthal-Zellerfeld
[3] Helmholtz Zentrum Geesthacht, Max Planck Straße 1, Geb 33, Geesthacht
[4] Department of Engineering Design, Indian Institute of Technology Madras, Chennai
关键词
Aluminum alloys; Corrosion; Precipitates; Solution treatment;
D O I
10.1007/s13632-015-0219-z
中图分类号
学科分类号
摘要
The mechanical and corrosion behavior of Al alloy 6082-T6 subjected to solution heat treating condition at temperatures varying from 400 to 600 °C and soaking times of 3–24 h have been investigated. Solution heat treating at 550 °C for 24 h led to the dissolution of the Mg2Si and AlSi6Mg3Fe precipitates into the matrix, and the Al12(FeMn)3Si2 phase transformed into Al85(Fe0.28Mn0.72)14Si phase. The solution-treated alloy showed equiaxed grain morphology with an average grain size of 85.7 µm. Increasing the solution heat treating temperature beyond 550 °C caused a reduction in corrosion resistance of the alloy. The pitting potential increased due to the presence of the anodic phase Mg2Si (dissolved at 550 °C) in Al matrix and it decreased with the formation of cathodic phases such as AlSi6Mg3Fe and Al12(FeMn)3Si2 (dissolved at 550 °C/24 h) in the alloy. General corrosion resistance of the alloy increased with decreasing Mg2Si concentration in the Al matrix. The optimum solution heat treating condition of 550 °C for 24 h resulted in an improvement in hardness (63 VHN), ultimate tensile strength (UTS—208 MPa), and pitting potential (−675 mV) and uniform corrosion potential (−1.255 mV) of 6082 Al alloy. © 2015, Springer Science+Business Media New York and ASM International.
引用
收藏
页码:411 / 422
页数:11
相关论文
共 36 条
[1]  
Hong L., Gang Z., Ming L.C., Liang Z., Effects of magnesium content on phase constituents of Al-Mg-Si-Cu alloys, Trans. Nonferrous Met. Soc. China, 16, pp. 376-381, (2006)
[2]  
Miller W.S., Zhuang L., Bottema J., Wittebrood J., Smet P.D., Haszler A., Vieregge A., Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A, 280, pp. 37-49, (2006)
[3]  
Hirth S.M., Marshall G.J., Court S.A., Lloyd D.J., Effects of Si on the aging behavior and formability of aluminium alloys based on AA6016, Mater. Sci. Eng. A, 319-321, pp. 452-456, (2001)
[4]  
Aytac A., Dascilar B., Usta M., The effect of extrusion speed on the structure and corrosion properties of aged and non-aged 6063 aluminum alloy, Mater. Chem. Phys., 130, pp. 1357-1360, (2011)
[5]  
Birol Y., The effect of homogenization practice on the microstructure of AA6063 billets, J. Mater. Process. Technol., 148, pp. 250-258, (2004)
[6]  
Cai M., Robson J.D., Lormier G.W., Parson N.C., Simulation of the casting and homogenization of two 6xxx series alloys, Mater. Sci. Forum, 396-402, pp. 209-214, (2002)
[7]  
Ji Y.L., Guo F.N., Pan Y.F., Microstructural characteristics and paint-bake response of Al-Mg-Si-Cu alloy, Trans. Nonferrous Met. Soc. China, 18, pp. 126-131, (2008)
[8]  
Bjornbakk E.B., Saeter J.A., Reiso O., Tundal F., The influence of homogenisation cooling rate, billet preheating temperature and die geometry on the T5-properties for three 6xxx alloys extruded under industrial conditions, Mater. Sci. Forum, 396-402, pp. 405-410, (2002)
[9]  
Hong L., Gang Z., Ming L.C., Liang Z., Effect of Mn addition on microstructures and properties of Al-Mg-Si-Cu system alloys for automotive body sheets, J. Northeast. Univ., 4, pp. 347-350, (2005)
[10]  
Kujipers N.C.W., Vermolen F.J., Vuik C., Koenis P.T.G., Nilsen K.E., Zwaag S.V., The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements, Mater. Sci. Eng. A, 394, pp. 9-19, (2005)