Cauchy–Rassias Stability of Cauchy–Jensen Additive Mappings in Banach Spaces

被引:0
作者
Choonkil Baak
机构
[1] Chungnam National University,Department of Mathematics
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
Cauchy additive mapping; Jensen additive mapping; Cauchy–Rassias stability; isomorphism between Banach algebra; 39B52;
D O I
暂无
中图分类号
学科分类号
摘要
Let X, Y be vector spaces. It is shown that if a mapping f : X → Y satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f{\left( {\frac{{x + y}} {2} + z} \right)} + f{\left( {\frac{{x - y}} {2} + z} \right)} = f{\left( x \right)} + 2f{\left( z \right)}, $$\end{document}(0.1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f{\left( {\frac{{x + y}} {2} + z} \right)} - f{\left( {\frac{{x - y}} {2} + z} \right)} = f{\left( y \right)}, $$\end{document}(0.2) or\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2f{\left( {\frac{{x + y}} {2} + z} \right)} = f{\left( x \right)} + f{\left( y \right)} + 2f{\left( z \right)} $$\end{document} (0.3) for all x, y, z ∈ X, then the mapping f : X → Y is Cauchy additive. Furthermore, we prove the Cauchy–Rassias stability of the functional equations (0.1), (0.2) and (0.3) in Banach spaces. The results are applied to investigate isomorphisms between unital Banach algebras.
引用
收藏
页码:1789 / 1796
页数:7
相关论文
共 19 条
  • [1] Hyers undefined(1941)undefined Pro. Nat’l. Acad. Sci. U.S.A. 27 222-undefined
  • [2] Rassias undefined(1978)undefined Proc. Amer. Math. Soc. 72 297-undefined
  • [3] Haruki undefined(1995)undefined Proc. Amer. Math. Soc. 123 495-undefined
  • [4] Hou undefined(2004)undefined J. Korean Math. Soc. 41 461-undefined
  • [5] Park undefined(2002)undefined J. Math. Anal. Appl. 275 711-undefined
  • [6] Park undefined(2004)undefined Acta Math. Sinica, English Series 20 1047-undefined
  • [7] Park undefined(2005)undefined Acta Math. Sinica, English Series 21 1391-undefined
  • [8] Park undefined(2003)undefined Chinese Ann. Math., Series B 24 261-undefined
  • [9] Rassias undefined(1982)undefined J. Funct. Anal. 46 126-undefined
  • [10] Rassias undefined(1989)undefined J. Approx. Theory 57 268-undefined