Some fixed point theorems for SF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_F$$\end{document}-contraction in complete fuzzy metric spaces

被引:0
作者
Surjeet Singh Chauhan
Mohammad Imdad
Gurjeet Kaur
Anupam Sharma
机构
[1] Chandigarh University,Department of Mathematics
[2] Aligarh Muslim University,Department of Mathematics
[3] Punjab Technical University,Department of Mathematics and Statistics
[4] Indian Institute of Technology,undefined
关键词
-contraction; -contraction; Fixed point; Fuzzy metric space; 74H10; 54H25;
D O I
10.1007/s13370-019-00673-4
中图分类号
学科分类号
摘要
In this paper, we prove some fixed point theorems by introducing a new F-contraction namely SF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_F$$\end{document}-contraction in fuzzy metric spaces by combining the idea of Wardowski’s (Fixed Point Theory Appl 2012, Article ID 94, 2012) and Secelean’s (Fixed Point Theory Appl 2013, Article ID 277, 2013) contractions in metric spaces and Grabiec’s (Fuzzy Sets Syst 125, 385–389, 1988) contraction in fuzzy metric spaces. An example is also given to support the results proved herein.
引用
收藏
页码:651 / 662
页数:11
相关论文
共 40 条
  • [1] Agarwal RP(2004)Fixed point theory for generalized contractive maps of Meir–Keeler type Math. Nachr. 276 3-22
  • [2] O’Regan D(1922)Sur les operations dans les ensembles abstraits et leur application aux equations integrals Fundam. Math. 3 133-181
  • [3] Shahzad N(2003)on the approximation of fixed point of weak contraction mappings Carpath. J. Math. 19 7-22
  • [4] Banach S(2004)Approximating fixed point of weak contractions using Picard’s iteration Nonlinear Anal. Forum 9 43-53
  • [5] Berinde V(1969)On non linear contractions Proc. Am. Math. Soc. 20 458-464
  • [6] Berinde V(1912)Under Abbildung Von Mannigfalting Keiten Math. Ann. 71 97-115
  • [7] Boyd DW(1974)A generalization of Banach’s contraction principle Proc. Am. Math. Soc. 45 267-273
  • [8] Wong JSW(2010)Some new results and generalizations in metric fixed point theory Nonlinear Anal. 73 1439-1446
  • [9] Brouwer LEJ(1962)On fixed and periodic points under contractive mappings J. Lond. Math. Soc. 37 74-79
  • [10] Ciric LB(1979)Metric spaces in fuzzy set theory J. Math. Anal. Appl. 69 205-230