On 3-Bisections in Cubic and Subcubic Graphs

被引:0
作者
Davide Mattiolo
Giuseppe Mazzuoccolo
机构
[1] Università di Modena e Reggio Emilia,Dipartimento di Scienze Fisiche, Informatiche e Matematiche
[2] Università degli Studi di Verona,Dipartimento di Informatica
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Cubic graph; -Bisection; MSC 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
A k-bisection of a graph is a partition of the vertices in two classes whose cardinalities differ of at most one and such that the subgraphs induced by each class are acyclic with all connected components of order at most k. Esperet, Tarsi and the second author proved in 2017 that every simple cubic graph admits a 3-bisection. Recently, Cui and Liu extended that result to the class of simple subcubic graphs. Their proof is an adaptation of the quite long proof of the cubic case to the subcubic one. Here, we propose an easier proof of a slightly stronger result. Indeed, starting from the result for simple cubic graphs, we prove the existence of a 3-bisection for all cubic graphs (also admitting parallel edges). Then we prove the same result for the larger class of subcubic graphs as an easy corollary.
引用
收藏
页码:743 / 746
页数:3
相关论文
共 18 条
[1]  
Abreu M(2019)Colourings of cubic graphs inducing isomorphic monochromatic subgraphs J. Graph. Theory 92 415-444
[2]  
Goedgebeur J(2018)A note on 2-bisections of claw-free cubic graphs Discrete Appl. Math. 244 214-217
[3]  
Labbate D(2016)Internal partitions of regular graphs J. Graph. Theory 83 5-18
[4]  
Mazzuoccolo G(2020)A note on 3-bisections in subcubic graphs Discrete Appl. Math. 285 147-152
[5]  
Abreu M(2019)-bisections in claw-free cubic multigraphs Discrete Appl. Math. 257 325-330
[6]  
Goedgebeur J(2017)Flows and bisections in cubic graphs J. Graph. Theory 86 149-158
[7]  
Labbate D(2020)Bounded-excess flows in cubic graphs J. Graph. Theory 95 138-159
[8]  
Mazzuoccolo G(undefined)undefined undefined undefined undefined-undefined
[9]  
Ban A(undefined)undefined undefined undefined undefined-undefined
[10]  
Linial N(undefined)undefined undefined undefined undefined-undefined