Identifiability analysis and prediction error identification of anaerobic batch bioreactors

被引:5
作者
Campestrini L. [1 ]
Eckhard D. [2 ]
Rui R. [1 ]
Bazanella A.S. [1 ]
机构
[1] Department of Electrical Engineering, Universidade Federal Do Rio Grande Do sul, Porto Alegre RS, Av. Osvaldo Aranha
[2] Department of Applied and Pure Mathematics, Universidade Federal Do Rio Grande Do sul, Building 43-111, Porto Alegre RS
来源
Campestrini, L. (luciola@ece.ufrgs.br) | 1600年 / Springer Science and Business Media, LLC卷 / 25期
关键词
Anaerobic digestion; Batch bioreactors; Identifiability; Nonlinear identification; Prediction error;
D O I
10.1007/s40313-014-0129-3
中图分类号
学科分类号
摘要
This paper presents the identifiability analysis of a nonlinear model for a batch bioreactor and the estimation of the identifiable parameters within the prediction error framework. The output data of the experiment are the measurements of the methane gas generated by the process, during 37 days, and knowledge of the initial conditions is limited to the initial quantity of chemical oxygen demand. It is shown by the identifiability analysis that only three out of the eight model parameters can be identified with the available measurements and that identification of the remaining parameters would require further knowledge of the initial conditions. A prediction error algorithm is implemented for the estimation of the identifiable parameters. This algorithm is iterative, relies on the gradient of the prediction error, whose calculation is implemented recursively, and consists of a combination of two classic optimization methods: the conjugated gradient method and the Gauss-Newton method. © 2014 Brazilian Society for Automatics - SBA.
引用
收藏
页码:438 / 447
页数:9
相关论文
共 25 条
[1]  
Aguirre L.A., Jacome C.R.F., Cluster analysis of NARMAX models for signaldependent systems, IEE Proceedings: Control Theory and Applications, 145, 4, pp. 409-414, (1998)
[2]  
Andrews J.F., Dynamic models and control strategies for wastewater treatment processes, Water Research, 8, 5, pp. 261-289, (1974)
[3]  
Antonelli R., Harmand J., Steyer J.-P., Astolfi A., Set-point regulation of an anaerobic digestion process with bounded output feedback, IEEE Transactions on Control Systems Technology, 11, 4, pp. 495-504, (2003)
[4]  
Bastin G., Dochain D., On-line Estimation and Adaptive Control of Bioreactors, (1990)
[5]  
Batstone D.J., Tait S., Starrenburg D., Estimation of hydrolysis parameters in full-scale anerobic digesters, Biotechnology and Bioengineering, 102, 5, pp. 1513-1520, (2009)
[6]  
Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., Sanders W.T.M., Siegrist H., Vavilin V.A., The IWA anaerobic digestion model no 1 (ADM1), Water Science and Technology, 45, 10, pp. 65-73, (2002)
[7]  
Bernard O., Hadj-Sadok Z., Dochain D., Genovesi A., Steyer J.-P., Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnology and Bioengineering, 75, 4, pp. 424-438, (2001)
[8]  
Berthoumieux S., Kahn D., De Jong H., Cinquemani E., Structural and practical identifiability of approximate metabolic network models, Preprints of the 16th IFAC Symposium on System Identification, IFAC, Brussels, pp. 1719-1724, (2012)
[9]  
Bogaerts Ph., Wouwer A.V., Parameter identification for state estimation - Application to bioprocess software sensors, Chemical Engineering Science, 59, 12, pp. 2465-2476, (2004)
[10]  
Campestrini L., Eckhard D., Konrad O., Bazanella A.S., Identificação não linear de um biorreator através da minimização do erro de predição, (Nonlinear Identification of a bioreactor through the minimization of the prediction error), XIX Congresso Brasileiro de Automática, 1, (2012)