Compressive strength prediction of fly ash concrete by using machine learning techniques

被引:0
|
作者
Suhaila Khursheed
J. Jagan
Pijush Samui
Sanjay Kumar
机构
[1] Galgotias University,School of Civil Engineering
[2] National Institute of Technology Patna,Department of Civil Engineering
来源
关键词
Compressive strength; Fly ash; Minimax probability machine regression; Prediction; Relevance vector machine;
D O I
暂无
中图分类号
学科分类号
摘要
In this research, the machine learning techniques such as, minimax probability machine regression (MPMR), relevance vector machine (RVM), genetic programming (GP), emotional neural network (ENN) and extreme learning machine (ELM) were utilized in the event of forecasting the 28 days compressive strength of fly ash concrete. In the present examination, exploratory database enveloping appropriate information recovered from a few past investigations has been made and used to prepare and approve the abovementioned MPMR, RVM, GP, ENN and ELM models. The database consists of cement, fly ash, coarse aggregate, fine aggregate, water, and water-binder ratio as the inputs whereas compressive strength of the concrete for 28 days is the output. The capability of the described models can be assessed by distinctive statistical parameters. The results from the mentioned models have been compared and decided that the MPMR model (R = 0.992) could be occupied as a decisive and authoritative data astute approach for forecasting the compressive strength of concrete which was fusion with fly ash as the admixture, thus preserving the tedious laboratory works. The accuracy of the adopted techniques was justified by comparing the distinct statistical parameters, distribution figures, and Taylor diagrams.
引用
收藏
相关论文
共 50 条
  • [1] Compressive Strength Prediction of Fly Ash Concrete Using Machine Learning Techniques
    Jiang, Yimin
    Li, Hangyu
    Zhou, Yisong
    BUILDINGS, 2022, 12 (05)
  • [2] Compressive strength prediction of fly ash concrete by using machine learning techniques
    Khursheed, Suhaila
    Jagan, J.
    Samui, Pijush
    Kumar, Sanjay
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2021, 6 (03)
  • [3] Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques
    Sevim, Umur Korkut
    Bilgic, Hasan Huseyin
    Cansiz, Omer Faruk
    Ozturk, Murat
    Atis, Cengiz Duran
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 271
  • [4] Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques
    Sevim, Umur Korkut
    Bilgic, Hasan Huseyin
    Cansiz, Omer Faruk
    Ozturk, Murat
    Atis, Cengiz Duran
    Construction and Building Materials, 2021, 271
  • [5] Predicting compressive strength of concrete with fly ash, metakaolin and silica fume by using machine learning techniques
    Ali, Al-Saraireh Majd
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2022, 19 (05)
  • [6] Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques
    Ahmad, Ayaz
    Ahmad, Waqas
    Aslam, Fahid
    Joyklad, Panuwat
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
  • [7] Prediction of compressive strength of concrete containing fly ash using data mining techniques
    Martins, Francisco F.
    Camoes, Aires
    CEMENT WAPNO BETON, 2013, 18 (01): : 39 - +
  • [8] Prediction of compressive strength of geopolymer concrete using machine learning techniques
    Gupta, Tanuja
    Rao, Meesala Chakradhara
    STRUCTURAL CONCRETE, 2022, 23 (05) : 3073 - 3090
  • [9] Research on prediction of compressive strength of fly ash and slag mixed concrete based on machine learning
    Wang, Meng
    Kang, Jiaxu
    Liu, Weiwei
    Su, Jinshuai
    Li, Meng
    PLOS ONE, 2022, 17 (12):
  • [10] Prediction of Compressive Strength of Fly Ash-Based Geopolymer Concrete Using Supervised Machine Learning Methods
    Arslan Qayyum Khan
    Muhammad Huzaifa Naveed
    Muhammad Dawood Rasheed
    Pengyong Miao
    Arabian Journal for Science and Engineering, 2024, 49 : 4889 - 4904