Multi-Scale Jacobi Method for Anderson Localization

被引:0
作者
John Z. Imbrie
机构
[1] University of Virginia,Department of Mathematics
来源
Communications in Mathematical Physics | 2016年 / 341卷
关键词
Large Block; Small Block; Anderson Localization; Graphical Expansion; Markov Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
A new KAM-style proof of Anderson localization is obtained. A sequence of local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential decay of the eigenfunction correlator (this implies strong dynamical localization). The method has been used in recent work on many-body localization (Imbrie in On many-body localization for quantum spin chains, arXiv:1403.7837, 2014).
引用
收藏
页码:491 / 521
页数:30
相关论文
共 57 条
[1]  
Aizenman M.(1994)Localization at weak disorder: some elementary bounds Rev. Math. Phys. 6 1163-1182
[2]  
Aizenman M.(1998)Localization bounds for an electron gas J. Phys. A. Math. Gen. 31 6783-6806
[3]  
Graf G.M.(1993)Localization at large disorder and at extreme energies: an elementary derivation Commun. Math. Phys. 157 245-278
[4]  
Aizenman M.(2001)Finite-volume fractional-moment criteria for Anderson localization Commun. Math. Phys. 224 219-253
[5]  
Molchanov S.(1983)Localization in Commun. Math. Phys. 88 465-477
[6]  
Aizenman M.(1983)-dimensional incommensurate structures Commun. Math. Phys. 88 207-234
[7]  
Schenker J.H.(1991)A metal-insulator transition for the almost Mathieu model Linear Algebra Appl. 146 79-91
[8]  
Friedrich R.M.(1985)Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems Commun. Math. Phys. 97 125-148
[9]  
Hundertmark D.(2012)Self-avoiding walk in 5 or more dimensions Math. Phys. Anal. Geom. 15 361-399
[10]  
Bellissard J.(2014)Direct scaling analysis of localization in single-particle quantum systems on graphs with diagonal disorder J. Stat. Phys. 154 1391-1429