Function Values Are Enough for L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-Approximation

被引:0
|
作者
David Krieg
Mario Ullrich
机构
[1] Johannes Kepler Universität,Institut für Analysis
[2] Lomonosov Moscow State University,Moscow Center for Fundamental and Applied Mathematics
关键词
-approximation; Sampling numbers; Rate of convergence; Random matrices; Sobolev spaces with mixed smoothness; 41A25; 41A46; 60B20; Secondary: 41A63; 46E35;
D O I
10.1007/s10208-020-09481-w
中图分类号
学科分类号
摘要
We study the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}-approximation of functions from a Hilbert space and compare the sampling numbers with the approximation numbers. The sampling number en\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_n$$\end{document} is the minimal worst-case error that can be achieved with n function values, whereas the approximation number an\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_n$$\end{document} is the minimal worst-case error that can be achieved with n pieces of arbitrary linear information (like derivatives or Fourier coefficients). We show that en≲1kn∑j≥knaj2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} e_n \,\lesssim \, \sqrt{\frac{1}{k_n} \sum _{j\ge k_n} a_j^2}, \end{aligned}$$\end{document}where kn≍n/log(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_n \asymp n/\log (n)$$\end{document}. This proves that the sampling numbers decay with the same polynomial rate as the approximation numbers and therefore that function values are basically as powerful as arbitrary linear information if the approximation numbers are square-summable. Our result applies, in particular, to Sobolev spaces Hmixs(Td)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s_\mathrm{mix}(\mathbb {T}^d)$$\end{document} with dominating mixed smoothness s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document} and dimension d∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \mathbb {N}$$\end{document}, and we obtain en≲n-slogsd(n).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} e_n \,\lesssim \, n^{-s} \log ^{sd}(n). \end{aligned}$$\end{document}For d>2s+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>2s+1$$\end{document}, this improves upon all previous bounds and disproves the prevalent conjecture that Smolyak’s (sparse grid) algorithm is optimal.
引用
收藏
页码:1141 / 1151
页数:10
相关论文
共 50 条