Integrating biological knowledge into variable selection: an empirical Bayes approach with an application in cancer biology

被引:0
作者
Steven M Hill
Richard M Neve
Nora Bayani
Wen-Lin Kuo
Safiyyah Ziyad
Paul T Spellman
Joe W Gray
Sach Mukherjee
机构
[1] The Netherlands Cancer Institute,Centre for Complexity Science
[2] University of Warwick,Department of Statistics
[3] University of Warwick,Life Sciences Division
[4] Genentech Inc,Center for Spatial Systems Biomedicine
[5] Lawrence Berkeley National Laboratory,undefined
[6] Oregon Health & Science University,undefined
来源
BMC Bioinformatics | / 13卷
关键词
Lasso; Markov Random Field; Marginal Likelihood; Inclusion Probability; Bayesian Variable Selection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 88 条
[1]  
Lee KE(2003)Gene selection: a Bayesian variable selection approach Bioinformatics 19 90-97
[2]  
Sha N(2005)A Bayesian regression approach to the inference of regulatory networks from gene expression data Bioinformatics 21 3131-3137
[3]  
Dougherty ER(2007)Bayesian variable selection and data integration for biological regulatory networks Ann Appl Stat 1 612-633
[4]  
Vannucci M(2009)Sparse combinatorial inference with an application in cancer biology Bioinformatics 25 265-271
[5]  
Mallick BK(2009)Genome-wide association analysis by lasso penalized logistic regression Bioinformatics 25 714-721
[6]  
Rogers S(2010)Bayesian variable selection for disease classification using gene expression data Bioinformatics 26 215-222
[7]  
Girolami M(2002)Bayes model averaging with selection of regressors J R Stat Soc B 64 519-536
[8]  
Jensen ST(1997)Approaches for Bayesian variable selection Stat Sin 7 339-373
[9]  
Chen G(2001)The practical implementation of Bayesian model selection IMS Lecture Notes-Monograph Ser 38 65-134
[10]  
Stoeckert CJ(2005)Causal protein-signaling networks derived from multiparameter single-cell data Science 308 523-529