Positive radially symmetric solution of the Dirichlet problem for a nonlinear elliptic system with p-Laplacian

被引:0
作者
É. I. Abduragimov
机构
[1] Russian Academy of Sciences,“Mathematical Notes,” Steklov Mathematical Institute
来源
Mathematical Notes | 2016年 / 100卷
关键词
Dirichlet problem; nonlinear differential equation; p-Laplacian; positive solution;
D O I
暂无
中图分类号
学科分类号
摘要
Sufficient conditions for the existence and uniqueness of a positive radially symmetric solution of the Dirichlet problem for a nonlinear elliptic second-order system with p-Laplacian are obtained. In addition, it also proved that these conditions guarantee the nonexistence of a global positive radially symmetric solution.
引用
收藏
页码:649 / 659
页数:10
相关论文
共 16 条
  • [1] Mitidieri E.(2001)A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities Trudy Mat. Inst. Steklov 234 3-383
  • [2] Pokhozhaev S. I.(1989)On a problem of L. V. Ovsyannikov Zh. Prikl. Mekh. i Tekhn. Fiz. 2 5-10
  • [3] Pokhozhaev S. I.(2005)Positive solutions of quasilinear elliptic equations Mat. Zametki 78 202-211
  • [4] Galakhov E. I.(1987)On the elliptic equations δu = Trans. Amer. Math. Soc. 304 639-668
  • [5] Cheng K. S.(1981)( Comm. Pure Appl. Math. 4 525-598
  • [6] Lin J. -Ts.(2007))u J. Math. Soc. Japan 59 393-421
  • [7] Gidas B.(2008) and δ Mat. Sb. 199 83-106
  • [8] Spruck J.(2006) = Bull. London Math. Soc. 38 1033-1044
  • [9] Zou H.(1995)( Nonlinear Anal., Theory Methods Appl. 24 159-163
  • [10] Zou H.(2008)) Izv. Vyssh. Uchebn. Zaved. Mat. 12 3-6