Assessment of subgrid-scale models in wall-modeled large-eddy simulations of turbulent channel flows

被引:0
|
作者
Wei-wen Zhao
Fu-chang Zhou
Guo-qing Fan
De-cheng Wan
机构
[1] Shanghai Jiao Tong University,Computational Marine Hydrodynamics Lab (CMHL), School of Naval Architecture, Ocean and Civil Engineering
[2] Wuhan Second Ship Design and Research Institute,undefined
来源
Journal of Hydrodynamics | 2023年 / 35卷
关键词
Wall-modeled large-eddy simulation (WMLES); subgrid-scale (SGS) model; turbulent channel flow; energy spectra;
D O I
暂无
中图分类号
学科分类号
摘要
Considering the demanding of grid requirements for high-Reynolds-number wall-bounded flow, the wall-modeled large-eddy simulation (WMLES) is an attractive method to deal with near wall turbulence. However, the effect of subgrid-scale (SGS) models for wall-bounded turbulent flow in combination with wall stress models is still unclear. In this paper, turbulent channel flow at Reτ =1 000 are numerically simulated by WMLES in conjunction with four different SGS models, i.e., the wall-adapting local eddy-viscosity model, the dynamic Smagorinsky model, the dynamic SGS kinetic energy model and the dynamic Lagrangian model. The mean velocity profiles are compared with the law of the wall, and the velocity fluctuations are compared with direct numerical simulation data. The energy spectrum of velocity and wall pressure fluctuations are presented and the role of SGS models on predicting turbulent channel flow with WMLES is discussed.
引用
收藏
页码:407 / 416
页数:9
相关论文
共 50 条
  • [1] Assessment of subgrid-scale models in wall-modeled large-eddy simulations of turbulent channel flows
    Zhao, Wei-wen
    Zhou, Fu-chang
    Fan, Guo-qing
    Wan, De-cheng
    JOURNAL OF HYDRODYNAMICS, 2023, 35 (03) : 407 - 416
  • [2] Subgrid-scale models for large-eddy simulations of compressible wall bounded flows
    Lenormand, E
    Sagaut, P
    Phuoc, LT
    Comte, P
    AIAA JOURNAL, 2000, 38 (08) : 1340 - 1350
  • [3] Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows
    Bose, Sanjeeb T.
    Park, George Ilhwan
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 50, 2018, 50 : 535 - 561
  • [4] ON THE MAGNITUDE OF THE SUBGRID-SCALE EDDY COEFFICIENT IN LARGE-EDDY SIMULATIONS OF TURBULENT CHANNEL FLOW
    MASON, PJ
    CALLEN, NS
    JOURNAL OF FLUID MECHANICS, 1986, 162 : 439 - 462
  • [5] Subgrid-Scale Models for Compressible Large-Eddy Simulations
    M. Pino Martín
    U. Piomelli
    G.V. Candler
    Theoretical and Computational Fluid Dynamics, 2000, 13 (5) : 361 - 376
  • [6] Subgrid-scale models for compressible large-eddy simulations
    Martín, MP
    Piomelli, U
    Candler, GV
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2000, 13 (05) : 361 - 376
  • [7] An efficient model for subgrid-scale velocity enrichment for large-eddy simulations of turbulent flows
    Hausmann, M.
    Evrard, F.
    van Wachem, B.
    PHYSICS OF FLUIDS, 2022, 34 (11)
  • [8] ON THE MAGNITUDE OF THE SUBGRID-SCALE EDDY COEFFICIENT IN LARGE-EDDY SIMULATIONS OF TURBULENT CHANNEL FLOW.
    Mason, P.J.
    Callen, N.S.
    Journal of Fluid Mechanics, 1986, 162 : 439 - 462
  • [9] Wall-modeled large-eddy simulations of flows with curvature and mild separation
    Radhakrishnan, Senthilkumaran
    Piomelli, Ugo
    Keating, Anthony
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (10): : 1012031 - 1012039
  • [10] Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows
    Silvis, Maurits H.
    Remmerswaal, Ronald A.
    Verstappen, Roel
    PHYSICS OF FLUIDS, 2017, 29 (01)