On the meromorphic solutions of certain class of nonlinear differential equations

被引:0
作者
Nana Liu
Weiran Lü
Chungchun Yang
机构
[1] China University of Petroleum,Department of Mathematics
[2] Nanjing University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
entire function; differential polynomial; Nevanlinna theory; Hayman’s alternative; differential equation; 34M10; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
Let α be an entire function, an−1,…,a1,a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{n-1},\ldots,a_{1},a_{0}$\end{document}, R be small functions of f, and let n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq2$\end{document} be an integer. Then, for any positive integer k, the differential equation fnf(k)+an−1fn−1+⋯+a1f+a0=Reα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f^{n}f^{(k)}+a_{n-1}f^{n-1}+\cdots+a_{1}f+a_{0}=R\mathrm{e}^{\alpha}$\end{document} has transcendental meromorphic solutions under appropriate conditions on the coefficients. In addition, for n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=1$\end{document} and k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=1$\end{document}, we have extended some well-known and relevant results obtained by others, by using different arguments.
引用
收藏
相关论文
共 31 条
  • [1] Hayman WK(1959)Picard values of meromorphic functions and their derivatives Ann. Math. (2) 70 9-42
  • [2] Mues E(1979)Über ein Problem von Hayman Math. Z. 164 239-259
  • [3] Bergweiler W(1995)On the singularities of the inverse to a meromorphic function of finite order Rev. Mat. Iberoam. 11 355-373
  • [4] Eremenko A(1995)The value distribution of Sci. China Ser. A 38 789-798
  • [5] Chen HH(2014)Entire solutions of certain type of difference equations J. Inequal. Appl. 2014 1437-1443
  • [6] Fang ML(2014)On Picard exceptional values of difference polynomials J. Differ. Equ. Appl. 20 157-167
  • [7] Liu NN(1996)On the value distribution of Kodai Math. J. 19 2125-2128
  • [8] Lü WR(1993)On the zeros of Chin. Sci. Bull. 38 97-101
  • [9] Shen TT(1997)On the product of a meromorphic function and its derivative Bull. Hong Kong Math. Soc. 1 695-703
  • [10] Yang CC(2003)On the zeros of Complex Var. Theory Appl. 48 375-380