Bootstrap Multiscale Analysis and Localization¶in Random Media

被引:0
|
作者
François Germinet
Abel Klein
机构
[1] UMR 8524 CNRS,
[2] UFR de Mathématiques,undefined
[3] Université de Lille 1,undefined
[4] 59655 Villeneuve d'Ascq Cédex,undefined
[5] France. E-mail: germinet@agat.univ-lille1.fr,undefined
[6] Department of Mathematics,undefined
[7] University of California,undefined
[8] Irvine,undefined
[9] Irvine,undefined
[10] CA 92697-3875,undefined
[11] USA.¶E-mail: aklein@uci.edu,undefined
来源
关键词
Exponential Decay; Finite Volume; Dynamical Localization; Random Medium; Eigenfunction Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an enhanced multiscale analysis that yields subexponentially decaying probabilities for bad events. For quantum and classical waves in random media, we obtain exponential decay for the resolvent of the corresponding random operators in boxes of side L with probability higher than 1 − e −Lζ, for any 0<ζ<1. The starting hypothesis for the enhanced multiscale analysis only requires the verification of polynomial decay of the finite volume resolvent, at some sufficiently large scale, with probability bigger than 1 −\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} (d is the dimension). Note that from the same starting hypothesis we get conclusions that are valid for any 0 < ζ < 1. This is achieved by the repeated use of a bootstrap argument. As an application, we use a generalized eigenfunction expansion to obtain strong dynamical localization of any order in the Hilbert–Schmidt norm, and better estimates on the behavior of the eigenfunctions.
引用
收藏
页码:415 / 448
页数:33
相关论文
共 50 条
  • [41] LOCALIZATION OF A POLYMERIC MANIFOLD IN QUENCHED RANDOM-MEDIA
    MUTHUKUMAR, M
    JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (08): : 4594 - 4603
  • [42] Random Schrodinger operators and Anderson localization in aperiodic media
    Rojas-Molina, C.
    REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (01)
  • [43] Localization of light in 2D random media
    Orlowski, A
    Rusek, M
    Mostowski, J
    MICROCAVITIES AND PHOTONIC BANDGAPS: PHYSICS AND APPLICATIONS, 1996, 324 : 165 - 174
  • [44] Extraordinary localization of collective electronic states in random media
    Genov, Dentcho A.
    Zhang, Xiang
    Seal, Katyayani
    Noh, Heeso
    Cao, Hui
    Ying, Z. Charles
    Sarychev, Andrey K.
    Shalaev, Vladimir M.
    COMPLEX PHOTONIC MEDIA, 2006, 6320
  • [45] LOCALIZATION OF LIGHT IN COHERENTLY AMPLIFYING RANDOM-MEDIA
    PRADHAN, P
    KUMAR, N
    PHYSICAL REVIEW B, 1994, 50 (13): : 9644 - 9647
  • [46] Localization of nonlinear dispersive waves in weakly random media
    Mei, CC
    Pihl, JH
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2017): : 119 - 134
  • [47] Multiscale statistical quantum transport in porous media and random alloys with vacancies
    Sharafedini, Elham
    Hamzehpour, Hossein
    Alidoust, Mohammad
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (03)
  • [48] Modeling of Multiscale Porous Media Using Multiple Markov Random Fields
    Liu, Y.
    Mohebi, A.
    Fieguth, P.
    PORO-MECHANICS IV, 2009, : 435 - 440
  • [49] Large-Scale Simulation of Acoustic Waves in Random Multiscale Media
    Soboleva, Olga N.
    Kurochkina, Ekaterina P.
    STATISTICS AND SIMULATION, IWS 8 2015, 2018, 231 : 85 - 97
  • [50] 3D multiscale modeling of strain localization in granular media
    Guo, Ning
    Zhao, Jidong
    COMPUTERS AND GEOTECHNICS, 2016, 80 : 360 - 372