Bootstrap Multiscale Analysis and Localization¶in Random Media

被引:0
|
作者
François Germinet
Abel Klein
机构
[1] UMR 8524 CNRS,
[2] UFR de Mathématiques,undefined
[3] Université de Lille 1,undefined
[4] 59655 Villeneuve d'Ascq Cédex,undefined
[5] France. E-mail: germinet@agat.univ-lille1.fr,undefined
[6] Department of Mathematics,undefined
[7] University of California,undefined
[8] Irvine,undefined
[9] Irvine,undefined
[10] CA 92697-3875,undefined
[11] USA.¶E-mail: aklein@uci.edu,undefined
来源
关键词
Exponential Decay; Finite Volume; Dynamical Localization; Random Medium; Eigenfunction Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an enhanced multiscale analysis that yields subexponentially decaying probabilities for bad events. For quantum and classical waves in random media, we obtain exponential decay for the resolvent of the corresponding random operators in boxes of side L with probability higher than 1 − e −Lζ, for any 0<ζ<1. The starting hypothesis for the enhanced multiscale analysis only requires the verification of polynomial decay of the finite volume resolvent, at some sufficiently large scale, with probability bigger than 1 −\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} (d is the dimension). Note that from the same starting hypothesis we get conclusions that are valid for any 0 < ζ < 1. This is achieved by the repeated use of a bootstrap argument. As an application, we use a generalized eigenfunction expansion to obtain strong dynamical localization of any order in the Hilbert–Schmidt norm, and better estimates on the behavior of the eigenfunctions.
引用
收藏
页码:415 / 448
页数:33
相关论文
共 50 条
  • [31] A stochastic variational multiscale method for diffusion in heterogeneous random media
    Asokan, Badrinarayanan Velamur
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (02) : 654 - 676
  • [32] Multiscale analysis of exit distributions for random walks in random environments
    Bolthausen, Erwin
    Zeitouni, Ofer
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (3-4) : 581 - 645
  • [33] Multiscale analysis of exit distributions for random walks in random environments
    Erwin Bolthausen
    Ofer Zeitouni
    Probability Theory and Related Fields, 2007, 138 : 581 - 645
  • [34] Bootstrap random walks
    Collevecchio, Andrea
    Hamza, Kais
    Shi, Meng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (06) : 1744 - 1760
  • [35] Strain localization analysis using a multiscale model
    Franz, G.
    Abed-Meraim, F.
    Ben Zineb, T.
    Lemoine, X.
    Berveiller, M.
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (03) : 768 - 773
  • [36] MULTISCALE ANALYSIS AND RANDOM-WALKS BOUNDARIES
    CONZE, JP
    RAUGI, A
    JOURNAL OF APPROXIMATION THEORY, 1993, 72 (03) : 329 - 345
  • [37] OBJECTIVE MULTISCALE ANALYSIS OF RANDOM HETEROGENEOUS MATERIALS
    Lloberas-Valls, O.
    Everdij, F. P. X.
    Rixen, D. J.
    Simone, A.
    Sluys, L. J.
    COMPUTATIONAL PLASTICITY XII: FUNDAMENTALS AND APPLICATIONS, 2013, : 407 - 418
  • [38] Localization transition of stiff directed lines in random media
    Boltz, Horst-Holger
    Kierfeld, Jan
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [39] LOCALIZATION OF POLYMER-CHAINS IN RANDOM-MEDIA
    PANYUKOV, SV
    JETP LETTERS, 1992, 56 (01) : 61 - 63
  • [40] LOCALIZATION OF BOUND WAVES IN HOMOGENEOUS RANDOM-MEDIA
    GITIS, MB
    GULIAEV, IV
    CHAIKOVSKII, IA
    DOKLADY AKADEMII NAUK SSSR, 1988, 301 (06): : 1370 - 1372