Bootstrap Multiscale Analysis and Localization¶in Random Media

被引:0
|
作者
François Germinet
Abel Klein
机构
[1] UMR 8524 CNRS,
[2] UFR de Mathématiques,undefined
[3] Université de Lille 1,undefined
[4] 59655 Villeneuve d'Ascq Cédex,undefined
[5] France. E-mail: germinet@agat.univ-lille1.fr,undefined
[6] Department of Mathematics,undefined
[7] University of California,undefined
[8] Irvine,undefined
[9] Irvine,undefined
[10] CA 92697-3875,undefined
[11] USA.¶E-mail: aklein@uci.edu,undefined
来源
关键词
Exponential Decay; Finite Volume; Dynamical Localization; Random Medium; Eigenfunction Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an enhanced multiscale analysis that yields subexponentially decaying probabilities for bad events. For quantum and classical waves in random media, we obtain exponential decay for the resolvent of the corresponding random operators in boxes of side L with probability higher than 1 − e −Lζ, for any 0<ζ<1. The starting hypothesis for the enhanced multiscale analysis only requires the verification of polynomial decay of the finite volume resolvent, at some sufficiently large scale, with probability bigger than 1 −\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} (d is the dimension). Note that from the same starting hypothesis we get conclusions that are valid for any 0 < ζ < 1. This is achieved by the repeated use of a bootstrap argument. As an application, we use a generalized eigenfunction expansion to obtain strong dynamical localization of any order in the Hilbert–Schmidt norm, and better estimates on the behavior of the eigenfunctions.
引用
收藏
页码:415 / 448
页数:33
相关论文
共 50 条
  • [21] Selective field localization in random structured media
    Roberts, Jason S. D.
    Alisafaee, Hossein
    Fiddy, Michael A.
    APPLIED OPTICS, 2013, 52 (04) : 742 - 749
  • [22] Criterion for light localization in random amplifying media
    Payne, Benjamin
    Cao, Hui
    Yamilov, Alexey
    PHYSICA B-CONDENSED MATTER, 2010, 405 (14) : 3012 - 3015
  • [23] Localization for random perturbations of anisotropic periodic media
    Stollmann, P
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 107 (1) : 125 - 139
  • [24] Transverse localization of directed waves in random media
    Ben-Gurion Univ of the Negev, Beer-Sheva, Israel
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (01): : 1094 - 1100
  • [25] Localization of dispersive waves in weakly random media
    Mei, Chiang C.
    Pihl, Jorgen H.
    Hancock, Mathew
    Li, Yile
    ADVANCES IN ENGINEERING MECHANICS - REFLECTIONS AND OUTLOOKS: IN HONOR OF THEODORE Y-T WU, 2005, : 29 - 47
  • [26] Localization for random perturbations of anisotropic periodic media
    Peter Stollmann
    Israel Journal of Mathematics, 1998, 107 : 125 - 139
  • [27] ON ANDERSON LOCALIZATION IN NONLINEAR RANDOM-MEDIA
    DOUCOT, B
    RAMMAL, R
    EUROPHYSICS LETTERS, 1987, 3 (09): : 969 - 974
  • [28] A multiscale approach to a synthetic aperture radar in dispersive random media
    Garnier, Josselin
    Solna, Knut
    INVERSE PROBLEMS, 2013, 29 (05)
  • [29] Stochastic multiscale modeling of crack propagation in random heterogeneous media
    Hun, Darith-Anthony
    Guilleminot, Johann
    Yvonnet, Julien
    Bornert, Michel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (13) : 1325 - 1344
  • [30] A BAYESIAN MULTISCALE DEEP LEARNING FRAMEWORK FOR FLOWS IN RANDOM MEDIA
    Padmanabha, Govinda Anantha
    Zabaras, Nicholas
    FOUNDATIONS OF DATA SCIENCE, 2021, 3 (02): : 251 - 303