Bootstrap Multiscale Analysis and Localization¶in Random Media

被引:0
|
作者
François Germinet
Abel Klein
机构
[1] UMR 8524 CNRS,
[2] UFR de Mathématiques,undefined
[3] Université de Lille 1,undefined
[4] 59655 Villeneuve d'Ascq Cédex,undefined
[5] France. E-mail: germinet@agat.univ-lille1.fr,undefined
[6] Department of Mathematics,undefined
[7] University of California,undefined
[8] Irvine,undefined
[9] Irvine,undefined
[10] CA 92697-3875,undefined
[11] USA.¶E-mail: aklein@uci.edu,undefined
来源
关键词
Exponential Decay; Finite Volume; Dynamical Localization; Random Medium; Eigenfunction Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an enhanced multiscale analysis that yields subexponentially decaying probabilities for bad events. For quantum and classical waves in random media, we obtain exponential decay for the resolvent of the corresponding random operators in boxes of side L with probability higher than 1 − e −Lζ, for any 0<ζ<1. The starting hypothesis for the enhanced multiscale analysis only requires the verification of polynomial decay of the finite volume resolvent, at some sufficiently large scale, with probability bigger than 1 −\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} (d is the dimension). Note that from the same starting hypothesis we get conclusions that are valid for any 0 < ζ < 1. This is achieved by the repeated use of a bootstrap argument. As an application, we use a generalized eigenfunction expansion to obtain strong dynamical localization of any order in the Hilbert–Schmidt norm, and better estimates on the behavior of the eigenfunctions.
引用
收藏
页码:415 / 448
页数:33
相关论文
共 50 条
  • [1] Bootstrap multiscale analysis and localization in random media
    Germinet, F
    Klein, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 222 (02) : 415 - 448
  • [2] Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians
    Klein, Abel
    Nguyen, Son T.
    JOURNAL OF SPECTRAL THEORY, 2015, 5 (02) : 399 - 444
  • [3] Propagation in multiscale random media
    Balk, AM
    PHYSICA B-CONDENSED MATTER, 2003, 338 (1-4) : 1 - 3
  • [4] Spectral analysis of wave localization and diffusion in random media
    Samelsohn, G
    Freilikher, V
    PHYSICA B-CONDENSED MATTER, 2003, 338 (1-4) : 115 - 120
  • [5] Multiscale theory of composite and random media
    Shen, Jie
    Flores, Mark
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2020, 40 (05): : 394 - 395
  • [6] Eigensystem bootstrap multiscale analysis for the Anderson model
    Klein, Abel
    Shing, Chi
    Tsang, Sidney
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (03) : 1149 - 1197
  • [7] AES for multiscale localization modeling in granular media
    Chen, Qiushi
    Andrade, Jose E.
    Samaniego, Esteban
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (33-36) : 2473 - 2482
  • [8] MULTISCALE ANALYSIS OF RANDOM SIGNAL
    COHEN, A
    FROMENT, J
    ISTAS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (08): : 567 - 570
  • [9] Localization of electromagnetic waves in random media
    Ziegler, K
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 79 : 1189 - 1198
  • [10] Coherent backscattering and localization in random media
    Li, Xin
    Yang, Ming
    Sun, Yu-Chao
    Guo, Shi-Liang
    Li, Zhi-Quan
    Faguang Xuebao/Chinese Journal of Luminescence, 2013, 34 (01): : 87 - 91