Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods

被引:0
作者
Michel Tenenhaus
Arthur Tenenhaus
Patrick J. F. Groenen
机构
[1] HEC Paris,Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506)
[2] CentraleSupelec-L2S-Université Paris-Sud,Bioinformatics and Biostatistics Core Facility
[3] Brain and Spine Institute,Econometric Institute, Erasmus School of Economics
[4] Erasmus University,undefined
来源
Psychometrika | 2017年 / 82卷
关键词
consensus PCA; hierarchical PCA; MAXBET; MAXDIFF; MAXVAR; multiblock component methods; PLS path modeling; GCCA; RGCCA; SSQCOR; SUMCOR;
D O I
暂无
中图分类号
学科分类号
摘要
A new framework for sequential multiblock component methods is presented. This framework relies on a new version of regularized generalized canonical correlation analysis (RGCCA) where various scheme functions and shrinkage constants are considered. Two types of between block connections are considered: blocks are either fully connected or connected to the superblock (concatenation of all blocks). The proposed iterative algorithm is monotone convergent and guarantees obtaining at convergence a stationary point of RGCCA. In some cases, the solution of RGCCA is the first eigenvalue/eigenvector of a certain matrix. For the scheme functions x, |x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }x{\vert }$$\end{document}, x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2}$$\end{document} or x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{4}$$\end{document} and shrinkage constants 0 or 1, many multiblock component methods are recovered.
引用
收藏
页码:737 / 777
页数:40
相关论文
共 65 条
  • [21] Kohler A(2003)A unified treatment of the weighting problem Journal of Chemometrics 17 323-337
  • [22] Qannari EM(1951)Path analysis with composite variables Annals of Mathematical Statistics 22 456-460
  • [23] Hassani S(1988)Sufficient conditions for the convergence of monotonic mathematical programming algorithms Psychometrika 53 487-494
  • [24] Hanafi M(2008)A framework for sequential multiblock component methods Total Quality Management & Business Excellence 19 871-886
  • [25] Qannari EM(2011)Minimum generalized variance for a set of linear functions Psychometrika 76 257-284
  • [26] Kohler A(2014)Generalized approaches to the MAXBET problem and the MAXDIFF problem, with applications to canonical correlations European Journal of Operational Research 238 391-403
  • [27] Horst P(2005)Component-based structural equation modelling Computational Statistics & Data Analysis 48 159-205
  • [28] Horst P(1958)Regularized generalized canonical correlation analysis Psychometrika 23 111-136
  • [29] Hotelling H(1984)Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis Psychometrika 49 70-94
  • [30] Journée M(1977)PLS path modeling Psychometrika 42 207-219