Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods

被引:0
作者
Michel Tenenhaus
Arthur Tenenhaus
Patrick J. F. Groenen
机构
[1] HEC Paris,Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506)
[2] CentraleSupelec-L2S-Université Paris-Sud,Bioinformatics and Biostatistics Core Facility
[3] Brain and Spine Institute,Econometric Institute, Erasmus School of Economics
[4] Erasmus University,undefined
来源
Psychometrika | 2017年 / 82卷
关键词
consensus PCA; hierarchical PCA; MAXBET; MAXDIFF; MAXVAR; multiblock component methods; PLS path modeling; GCCA; RGCCA; SSQCOR; SUMCOR;
D O I
暂无
中图分类号
学科分类号
摘要
A new framework for sequential multiblock component methods is presented. This framework relies on a new version of regularized generalized canonical correlation analysis (RGCCA) where various scheme functions and shrinkage constants are considered. Two types of between block connections are considered: blocks are either fully connected or connected to the superblock (concatenation of all blocks). The proposed iterative algorithm is monotone convergent and guarantees obtaining at convergence a stationary point of RGCCA. In some cases, the solution of RGCCA is the first eigenvalue/eigenvector of a certain matrix. For the scheme functions x, |x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }x{\vert }$$\end{document}, x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2}$$\end{document} or x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{4}$$\end{document} and shrinkage constants 0 or 1, many multiblock component methods are recovered.
引用
收藏
页码:737 / 777
页数:40
相关论文
共 65 条
  • [1] Chessel D(1996)Analyses de la co-inertie de Revue de Statistique Appliquée 44 35-60
  • [2] Hanafi M(2006) nuages de points Computational Statistics and Data Analysis 50 3086-3098
  • [3] Dahl T(1983)A bridge between Tucker-1 and Carroll’s generalized canonical analysis Journal of Economics 22 67-90
  • [4] Næs T(2015)Some comments on maximum likelihood and partial least squares methods Computational Statistics and Data Analysis 81 10-23
  • [5] Dijkstra TK(1994)Consistent and asymptotically normal PLS estimators for linear structural equations Computational Statistics and Data Analysis 18 121-140
  • [6] Dijkstra TK(1999)Multiple factor analysis, (AFMULT package) Psychological Methods 4 272-299
  • [7] Henseler J(2007)Evaluating the use of exploratory factor analysis in psychological research Computational Statistics 22 275-292
  • [8] Escofier B(2006)PLS path modelling: Computation of latent variables with the estimation mode B Computational Statistics and Data Analysis 51 1491-1508
  • [9] Pagès J(2010)Analysis of Journal of Chemometrics 24 703-709
  • [10] Fabrigar LR(2011) sets of data, with differential emphasis on agreement between and within sets Chemometrics and Intelligent Laboratory Systems 106 37-40