On positive quaternionic Kähler manifolds with certain symmetry rank

被引:0
|
作者
Jin Hong Kim
机构
[1] Korea Advanced Institute of Science and Technology,Department of Mathematical Sciences
来源
Israel Journal of Mathematics | 2009年 / 172卷
关键词
Scalar Curvature; Betti Number; Ahler Manifold; Morse Index; Curve Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a positive quaternionic Kähler manifold of real dimension 4m. In this paper we show that if the symmetry rank of M is greater than or equal to [m/2] + 3, then M is isometric to HPm or Gr2(Cm+2). This is sharp and optimal, and will complete the classification result of positive quaternionic Kähler manifolds equipped with symmetry. The main idea is to use the connectedness theorem for quaternionic Kähler manifolds with a group action and the induction arguments on the dimension of the manifold.
引用
收藏
页码:157 / 169
页数:12
相关论文
共 25 条
  • [21] A general inequality for warped product CR-submanifolds of K?hler manifolds
    Mustafa, Abdulqader
    Ozel, Cenap
    Linker, Patrick
    Sati, Monika
    Pigazzini, Alexander
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (01): : 1 - 16
  • [22] Generalized Kähler Manifolds, Commuting Complex Structures, and Split Tangent Bundles
    Vestislav Apostolov
    Marco Gualtieri
    Communications in Mathematical Physics, 2007, 271 : 561 - 575
  • [23] Examples of non-trivial rank in locally conformal Kähler geometry
    Maurizio Parton
    Victor Vuletescu
    Mathematische Zeitschrift, 2012, 270 : 179 - 187
  • [24] Homeomorphism classification of positively curved manifolds with almost maximal symmetry rank
    Fuquan Fang
    Xiaochun Rong
    Mathematische Annalen, 2005, 332 : 81 - 101
  • [25] Existence of some special conformally-Kähler metrics on certain CP1 bundles
    Chen, Jing
    Guan, Daniel
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (02) : 525 - 539