On positive quaternionic Kähler manifolds with certain symmetry rank

被引:0
|
作者
Jin Hong Kim
机构
[1] Korea Advanced Institute of Science and Technology,Department of Mathematical Sciences
来源
Israel Journal of Mathematics | 2009年 / 172卷
关键词
Scalar Curvature; Betti Number; Ahler Manifold; Morse Index; Curve Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a positive quaternionic Kähler manifold of real dimension 4m. In this paper we show that if the symmetry rank of M is greater than or equal to [m/2] + 3, then M is isometric to HPm or Gr2(Cm+2). This is sharp and optimal, and will complete the classification result of positive quaternionic Kähler manifolds equipped with symmetry. The main idea is to use the connectedness theorem for quaternionic Kähler manifolds with a group action and the induction arguments on the dimension of the manifold.
引用
收藏
页码:157 / 169
页数:12
相关论文
共 25 条
  • [1] On complete noncompact Kähler manifolds with positive bisectional curvature
    Bing-Long Chen
    Xi-Ping Zhu
    Mathematische Annalen, 2003, 327 : 1 - 23
  • [2] Conification of Kähler and Hyper-Kähler Manifolds
    D. V. Alekseevsky
    V. Cortés
    T. Mohaupt
    Communications in Mathematical Physics, 2013, 324 : 637 - 655
  • [3] A note on almost kähler manifolds
    Domenico Catalano
    Filip Defever
    Ryszard Deszcz
    Marian Hotloś
    Zbigniew Olszak
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1999, 69 : 59 - 65
  • [4] The energy of a Kähler class on admissible manifolds
    Santiago R. Simanca
    Christina Tønnesen-Friedman
    Mathematische Annalen, 2011, 351 : 805 - 834
  • [5] Mass, Kähler manifolds, and symplectic geometry
    Claude LeBrun
    Annals of Global Analysis and Geometry, 2019, 56 : 97 - 112
  • [6] On semisymmetric para-Kähler manifolds
    F. Defever
    R. Deszcz
    L. Verstraelen
    Acta Mathematica Hungarica, 1997, 74 : 7 - 17
  • [7] Miyaoka–Yau Inequality for Compact Kähler Manifolds with Semi-positive Canonical Bundles
    Ryosuke Nomura
    The Journal of Geometric Analysis, 2021, 31 : 9633 - 9638
  • [8] Compact Kähler manifolds with nonpositive bisectional curvature
    Gang Liu
    Geometric and Functional Analysis, 2014, 24 : 1591 - 1607
  • [9] Moment Maps, Scalar Curvature and Quantization of Kähler Manifolds
    Claudio Arezzo
    Andrea Loi
    Communications in Mathematical Physics, 2004, 246 : 543 - 559
  • [10] Complex points of minimal surfaces in almost Kähler manifolds
    Ma R.
    manuscripta mathematica, 1998, 95 (2) : 159 - 168