Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes

被引:0
作者
Lanqiang Li
Shixin Zhu
Li Liu
Xiaoshan Kai
机构
[1] Hefei University of Technology,School of Mathematics
来源
Quantum Information Processing | 2019年 / 18卷
关键词
Entanglement-assisted quantum error-correcting (EAQEC)codes; MDS codes; Generalized Reed–Solomon (GRS)codes;
D O I
暂无
中图分类号
学科分类号
摘要
Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of standard stabilizer quantum codes that can be obtained from arbitrary classical linear codes based on the entanglement-assisted stabilizer formalism. In this paper, by using generalized Reed–Solomon (GRS) codes, we construct two classes of entanglement-assisted quantum error-correcting MDS (EAQEC MDS) codes with parameters q2-12a,q2-12a-2d+c+2,d;cq,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left[ \left[ \frac{q^2-1}{2a},\frac{q^2-1}{2a}-2d+c+2,d;c\right] \right] _q, \end{aligned}$$\end{document}where q is an odd prime power of the form q=2am-1>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2am-1>3$$\end{document} with m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, 1≤c≤2a-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le c\le 2a-1$$\end{document} and cm+2≤d≤(a+⌈c2⌉)m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c m+2\le d\le (a+\lceil \frac{c}{2}\rceil )m$$\end{document}, and q2-12a+1,q2-12a+1-2d+c+2,d;cq,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left[ \left[ \frac{q^2-1}{2a+1},\frac{q^2-1}{2a+1}-2d+c+2,d;c\right] \right] _q, \end{aligned}$$\end{document}where q is a prime power of the form q=(2a+1)m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=(2a+1)m-1$$\end{document}, 1≤c≤2a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le c\le 2a$$\end{document} and cm+2≤d≤(a+1+⌊c2⌋)m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c m+2\le d\le (a+1+\lfloor \frac{c}{2}\rfloor )m$$\end{document}. The EAQEC MDS codes constructed have much larger minimum distance than the known quantum MDS codes with the same length, and most of them are new in the sense that the parameters of EAQEC codes are different from all the previously known ones. In particular, some of our EAQEC MDS codes have much larger d than the known ones that are of the same length and consume the same number of ebits.
引用
收藏
相关论文
共 89 条
  • [1] Shor PW(1995)Scheme for reducing decoherence in quantum computer memory Phys. Rev. A 52 R2493-2577
  • [2] Steane A(1996)Multiple-particle interference and quantum error correction Proc. R. Soc. Lond. Ser. A 452 2551-1387
  • [3] Calderbank AR(1998)Quantum error correction via codes over GF(4) IEEE Trans. Inf. Theory 44 1369-2920
  • [4] Rains EM(2005)Quantum codes from concatenated algebraic-geometric codes IEEE Trans. Inf. Theory 51 2915-1188
  • [5] Shor PW(2007)On quantum and classical BCH codes IEEE Trans. Inf. Theory 53 1183-35
  • [6] Sloane NJA(2013)Hermitian dual containing BCH codes and construction of new quantum codes Quantum Inf. Comput. 13 21-1197
  • [7] Chen H(2013)New quantum MDS codes from negacyclic codes IEEE Trans. Inf. Theory 59 1193-2085
  • [8] Ling S(2014)Constacyclic codes and some new quantum MDS codes IEEE Trans. Inf. Theory 60 2080-889
  • [9] Xing C(2015)New quantum MDS codes derived from constacyclic codes Quantum Inf. Process. 14 881-517
  • [10] Aly SA(2017)Quantum MDS codes with large minimum distance Des. Codes Cryptogr. 83 503-471