Spot estimation for fractional Ornstein–Uhlenbeck stochastic volatility model: consistency and central limit theorem

被引:0
作者
Yaroslav Eumenius-Schulz
机构
[1] LPSM-UPMC,
来源
Statistical Inference for Stochastic Processes | 2020年 / 23卷
关键词
Rough volatility; Fractional stochastic volatility; Spot volatility estimator; Central limit theorem; 60; 62;
D O I
暂无
中图分类号
学科分类号
摘要
There has been an increasing interest for rough stochastic volatility models. However, little is known about the statistical inference for such models, especially for high frequency data. This paper investigates estimation of the fractional spot volatility from discrete observations of the price process on a grid with a time interval Δn→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _n\rightarrow 0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. Namely, the model with fractional Ornstein–Uhlenbeck log-volatility and Itô-semimartingale log-price processes is considered. In this setup both consistency and central limit theorem are proven for truncated and non-truncated spot volatility estimators. Then, asymptotic confidence intervals are derived for a finite number of spot volatility estimators at different estimation times. Consequently, the highest possible rate of convergence achieved in the central limit theorem ΔnH/(2H+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _n^{H/(2H+1)}$$\end{document} is a function of the Hurst parameter H of the fractional Brownian motion driving the volatility. This rate coincides with the already known highest convergence rate for the Brownian case when H=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=0.5$$\end{document}. Furthermore, simulations in this paper validate the consistency and central limit theorem numerically. Article class.
引用
收藏
页码:355 / 380
页数:25
相关论文
共 24 条
  • [1] Aït-Sahalia Y(2017)Semimartigale: Itô or Not? Stoch Proces Their Appl 128 233-254
  • [2] Jacod J(1978)On mixing and stability of limit theorems Ann Probab 6 325-331
  • [3] Aldous DJ(2019)Short-time near-the-money skew in rough fractional volatility models Quant Finance 19 779-798
  • [4] Eagleson GK(2003)Fractional Ornstein–Uhlenbeck processes Electron J Probab 8 1-14
  • [5] Bayer C(1998)Long memory in continuous-time stochastic volatility models Math Finance 8 291-323
  • [6] Fritz PK(1994)A general version of the fundamental theorem of asset pricing Math Ann 300 463-520
  • [7] Gulisashvili A(2018)The microstructural foundations of leverage effect and rough volatility Financ Stoch 22 241-280
  • [8] Horvath B(2018)Volatility is rough Quant Finance 18 933-949
  • [9] Stemper B(1968)Fractional Brownian motions, fractional noises and applications SIAM Rev 10 422-437
  • [10] Cheridito P(undefined)undefined undefined undefined undefined-undefined