Absence of Dobrushin States for 2d Long-Range Ising Models

被引:0
|
作者
Loren Coquille
Aernout C. D. van Enter
Arnaud Le Ny
Wioletta M. Ruszel
机构
[1] Univ. Grenoble Alpes,Johann Bernoulli Institute for Mathematics and Computer Science
[2] CNRS,Delft Institute of Applied Mathematics
[3] Institut Fourier,undefined
[4] University of Groningen,undefined
[5] LAMA UMR CNRS 8050,undefined
[6] UPEC,undefined
[7] Université Paris-Est,undefined
[8] Eurandom,undefined
[9] TU/e Eindhoven,undefined
[10] Technical University Delft,undefined
来源
Journal of Statistical Physics | 2018年 / 172卷
关键词
Gibbs states; Long-range Ising model; Dobrushin states; Interface fluctuations; 82B05; 82B20; 82B26;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the two-dimensional Ising model with long-range pair interactions of the form Jxy∼|x-y|-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{xy}\sim |x-y|^{-\alpha }$$\end{document} with α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >2$$\end{document}, mostly when Jxy≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{xy} \ge 0$$\end{document}. We show that Dobrushin states (i.e. extremal non-translation-invariant Gibbs states selected by mixed ± boundary conditions) do not exist. We discuss possible extensions of this result in the direction of the Aizenman–Higuchi theorem, or concerning fluctuations of interfaces. We also mention the existence of rigid interfaces in two long-range anisotropic contexts.
引用
收藏
页码:1210 / 1222
页数:12
相关论文
共 50 条
  • [1] Absence of Dobrushin States for 2d Long-Range Ising Models
    Coquille, Loren
    van Enter, Aernout C. D.
    Le Ny, Arnaud
    Ruszel, Wioletta M.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (05) : 1210 - 1222
  • [2] Nonlinear methods for the identification of 2D models with long-range dependence
    Pesquet-Popescu, B
    Pesquet, JC
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 867 - 871
  • [3] Asymptotic states of Ising ferromagnets with long-range interactions
    Agrawal, Ramgopal
    Corberi, Federico
    Insalata, Ferdinando
    Puri, Sanjay
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [4] GENERALIZED LONG-RANGE FERROMAGNETIC ISING SPIN MODELS
    CANNING, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (13): : 3029 - 3036
  • [5] Absence of localization on the 2d model with long-range correlated off-diagonal disorder
    F.A.B.F. de Moura
    The European Physical Journal B, 2010, 78 : 335 - 339
  • [6] Absence of localization on the 2d model with long-range correlated off-diagonal disorder
    de Moura, F. A. B. F.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 78 (03): : 335 - 339
  • [7] TRANSITION-TEMPERATURE FOR 2D AFM ISING-MODEL WITH THE LONG-RANGE FRUSTRATING INTERACTION
    SOKOL, AV
    EUROPHYSICS LETTERS, 1990, 12 (06): : 539 - 544
  • [8] LONG-RANGE 2D INADEQUATE IN STRUCTURE DETERMINATION
    SCHRAML, J
    BLECHTA, V
    KRAHE, E
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1992, 57 (10) : 2005 - 2011
  • [9] Relations between short-range and long-range Ising models
    Angelini, Maria Chiara
    Parisi, Giorgio
    Ricci-Tersenghi, Federico
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [10] Universality Class of Ising Critical States with Long-Range Losses
    Marino, Jamir
    PHYSICAL REVIEW LETTERS, 2022, 129 (05)