Local well-posedness for periodic Benjamin equation with small initial data

被引:0
作者
Shaoguang Shi
Junfeng Li
机构
[1] Linyi University,Department of Mathematics
[2] Ministry of Education,Laboratory of Mathematics and Complex Systems
[3] Beijing Normal University,School of Mathematical Sciences
来源
Boundary Value Problems | / 2015卷
关键词
Benjamin equation; local well-posedness; bilinear estimate; 35Q53; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
The local well-posedness of the periodic Benjamin equation with small initial value in Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{s}(\mathbb{T})$\end{document}, s≥−1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\geq-{1}/{2}$\end{document}, is given. It is here shown that −1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-{1}/{2}$\end{document} is the lower endpoint to obtain the bilinear estimates which are the crucial steps to obtain the local well-posedness by the Picard iteration.
引用
收藏
相关论文
共 60 条
[1]  
Benjamin B(1992)A new kind of solitary wave J. Fluid Mech. 245 401-411
[2]  
Guo Z(2007)The well-posedness of KdV-Benjamin-Ono equation in low regularity spaces J. Am. Math. Soc. 20 753-798
[3]  
Huo Z(2007)Global well-posedness of the Benjamin-Ono equation J. Am. Math. Soc. 20 753-798
[4]  
Ionescu A(2003)On the local well-posedness of the Benjamin-Ono equation in Int. Math. Res. Not. 2003 1449-1464
[5]  
Kenig C(2004)Global well-posedness of the Benjamin-Ono equation in J. Hyperbolic Differ. Equ. 1 27-49
[6]  
Koch H(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal. 3 107-156
[7]  
Tzvetkov N(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation Geom. Funct. Anal. 3 209-262
[8]  
Tao T(2003)Asymptotics, frequency modulation and low regularity ill-posedness for canonical defocusing equations Am. J. Math. 125 1235-1293
[9]  
Bourgain J(2003)Sharp global well-posedness for KdV and modified KdV on ℝ and J. Am. Math. Soc. 16 705-749
[10]  
Bourgain J(2009)Global well-posedness of Korteweg-de Vries equation in J. Math. Pures Appl. 91 583-597